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ZEROS OF BOUNDED HOLOMORPHIC FUNCTIONS
IN STRICTLY PSEUDOCONVEX DOMAINS IN C2

by Jim ARLEBRINK

1. Introduction and statement of the results.

Let D be a bounded domain in C2, and let X be a positive divisor in
D. This paper is concerned with the problem of finding conditions on. X
such that X is defined by a bounded holomorphic function / on D^ i.e. /
vanishes with given multiplicity on each branch of X.

In the case when D is the unit ball, Berndtsson [Be] proved that a
sufficient condition is that X has finite area. Our aim is to extend this
result to strictly pseudoconvex domains. More precisely we will prove the
following result :

THEOREM 1.1. — Let D be a bounded strictly pseudoconvex
domain in C2 with C3 boundary. IfX is a positive divisor ofD with finite
area and the canonical cohomology class ofX in ^^(D.Z) is zero, then
there exists a bounded holomorphic function that defines X.

We remark that this result was proved in [Ar] under the additional
assumption that the boundary of D is real analytic. Note also that Theorem
1.1 is not true in higher dimensions, and that the conditions on X is not
necessary, see [Be] and [Ski].

Key words : Bounded holomorphic functions - ̂ -equation - Zero divisor.
A.M.S. Classification : 32A25.
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When D is a strictly pseudoconvex domain in C", a complete char-
acterization of functions belonging to the Nevanlinna class was found inde-
pendently by Henkin [Hel] and Skoda [Sk2]. They showed that a positive
divisor is a zero set of a function in the Nevanlinna class if and only if the
divisor satisfies a generalization of the classical Blaschke condition. Assum-
ing a stronger size condition on X, Varopoulos [Va] has proved that X is
the zero set of a function in HP(D), for some p.

As observed by Leiong [Lei], [Le2], these problems are closely con-
nected to the equation

(1) i99u == 6,

where 0 is a closed and positive (1, l)-current associated to the zero set
X. Now, if ^(D^C) = 0, then every solution of (1) can be written
as u = log |/|, where / is a holomorphic function that defines X. If
^(-D.C) 7^ 0, then u has to be modified slightly, see section 4. Thus,
in order to prove results of this kind one has to solve equation (1) with
control of the growth of u. In particular, if u is a negative solution of (1),
then X is the zero set of a bounded holomorphic function.

Theorem 1.1 is obtained as a consequence of

THEOREM 1.2. — Let D be a bounded strictly pseudoconvex
domain in C2 with C3 boundary, and let 0 be a closed positive (1,1)-
form with coefficients in C°°(D). Assume that the cohomology class of 0
in H^^D^ C) is zero. Then there exists a negative solution of

i99u = 0,

such that

(2) / \u\da <, C f tr0,
JQD JD

where C is independent of 6.

The proof of Theorem 1.2 follows, initially, the classical method of
Leiong to solve equation (1). First, the assumption on 0 implies that one
can solve

(3) idw == 0,

where w = wi,o + WQ,I. Note that (3) implies that 9wo,i = 0. Then one
solves

Qu = wo i.
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Then, 2Ren is a solution of (1), provided that w is chosen so that
^1,0 = -^o,i-

By subtracting a pluriharmonic function p we obtain a solution of
(1) with negative boundary values. The resulting solution depends on the
choice of w, and is in fact not linearly dependent on 0.

The ideas we use are similar to those employed by Berndtsson [Be];
the principal difference is that in the ball case one can choose p in such a
way that the final solution depends only on 0, in fact linearly.

The paper is organized as follows. In Section 2 we give, for motivation,
an outline of the proof of Theorem 1.2, which is proved in detail in Section 3.
Section 4 is devoted to the proof of Theorem 1.1. In Section 5 we solve the
d-equation and obtain estimates for the solution. In Section 6 we obtain
a solution to the 9-equation by means of integral formulas. Finally, in
Section 7 we prove a lemma which is crucial for the proof of Theorem 1.2.

The notation x ^ y means that there is a constant (7, independent
of x and y such that x < Cy. Further, x ~ y is equivalent to x ^ y and y
^ x. The surface measure on 9D is denoted by da and d\ is the Lebesgue
measure in C2. The trace of 6 is denoted by tr0.

I would like to thank Bo Berndtsson, who suggested the topic of this
paper, and Mats Andersson for his support and interest in my work.

2. Idea of the proof of Theorem 1.2.

Let D = {C € C2 : p(C) < 0} be a strictly pseudoconvex domain in
C2. Assume that there is a function v(z^ C) defined on D x D satisfying the
following conditions :

(1) ^C,0==p(C),
(2) ^(^0=^^,0=0,
(3) 2;(C^)=^0,

and
(4) v{z,C) T^O when z ̂  C-

It is easy to see that if such a v exists, then it is unique. Let

S(z^) =(5i, 82) : D x D — C 2
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be a smooth map, holomorphic in z for each C, € 9D, such that

(5) ^, 0 = (5, ̂ -C) if (z, QeQDx 9D.

Here we write {^rj) = ^^j^j when ^,77 € C2. With 6' we associate the
(1,0)-form ̂  SjdC,^ which is also denoted by S. We define another map Q
by Q(^,C) = S(^z). Note that according to (3) and (5), Q satisfies

(6) v = {Q, (-z) for (z, Qe9Dx 9D,

and that Q is holomorphic in ^ when 2; 6 9-D.

Now, let w = Wi^o + wo,i be a solution of idw = 0 with ||w||^i(^o) ;$
I I^HL^D) where 0 is a smooth, positive and closed (1,1) form. Then, as we
will prove later, the function

. x _ L [ Q A 5 A WQJ
^ /47^2^D^^-C)(Q,C-^

represents the boundary values of a solution to 9u = WQ,I. In view of (3),
(5) and (6) we can write

^ I f Q A g A w p j^) == ——, \ ——,—.——-.
47T2 JQD \V?

It turns out that for our choice of S and Q, we can choose a
pluriharmonic function? such that HpHz/^aD) ^ H^HL^D) ^d
, , _ 1 { 9v A 9v A wo i
7) 2Ren-p<2Re-^ / ———-,3—-^-.

47r2 79^ |i;|2

By Stokes5 theorem the right hand side in (7) equals
1 /• 9v A 9v A (9wo,i _ 1 /• i9v/\9v^e

(8) 2 Re -—^- i ———j—j^——— — — -—T) I ——i—TQ—— ?
47r2 7^ H2 47r2 7^ H2

since by (2) and (3), (9v/\9v)/\v\2 is a closed form. Thus 2Reu—p are the
boundary values of a solution to equation (1.1) which are negative since
i9v A 9v A 0 is a positive form.

It is easy to see that if v exists, then p is real analytic. Conversely, if
the defining function p is real analytic, then v is obtained, locally, from the
power series of p(C, C) by substituting z in place of C- In particular, when
D is the unit ball B^ then v = z ' ^—1 so that we can choose S = ^ and
Q = z. The last term in (8) is then

1 r id(z ' <) A d(z ' C) A 6
~ ^ J B R ^ T i 2 '

which is the formula for the boundary values obtained by Berndtsson [Be].
In fact, in this case there is equality in (7) for an appropriate choice of p.
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For an arbitrary strictly pseudoconvex domain, we can construct v
with essentially all the required properties near the diagonal. This gives rise
to certain error terms which, however, can be majorized by pluriharmonic
functions and the scheme above still works.

3. Proof of Theorem 1.2.

Following the outline in Section 2, we will start by defining the
function v. Let

^,c)=-[.(c)+E^-o)+JE|^^-o)^-a)].
Then v(z, C) + p(C) is just the Levi polynomial of p and hence
(1) 2Re^, C) > -p(C) - P(z) + C\z - C|2,
for \z-C,\ sufficiently small. Clearly v(z, <) is holomorphic in z. We will use
the following properties of v.

LEMMA 3 .1 .

(2) ^^o=o(|^-c|2)
(3) ^M=^)+0(|^-C13).

Proof. — Equality (2) follows by an easy calculation.

To prove (3) we expand v(z, <) in a Taylor series in the C variable at
the point z. Using (2) we get

^.c)=^,.)+E^(o-^)4E^(o-^)(c.-.)
+0(1^-C13)

-^-E^-^-JE^O-^-.)
__ +0(1^-C13).

Hence v(z, Q = v(^, z) + 0(|2:-C|3) as desired.

Remark. — A similar proof of (3) can be found in [KS],

In order to construct the map S we first observe that by the definition
of v one can find a map S such that

<5,2-C}=i;(2,0+p(c).
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By (1) we can choose e so small that Rev(z^) > 0 when 0 < |^—CI < 2^.
Let \(z^ C) be a smooth function such that Q <\< 1,^=1 when |2;—^| < e
and ^ = 0 when |^—C| ^ 2s:. We now define S by

^c)=^(^0+(i-x)(^-C).
Then

2 Re(S, z^} ̂  p«) - p(z) + <7|^-C|2 when (^ () e D x D.

It is obvious that, if \z—(,\ < e^ S{z^ Q is holomorphic in z and

(4) (5,z-C)=^C)+p(C)

holds.

We define the map Q by

Q(z^)=S(^z).

Then <9<;Q(^, C) = 0 for \z-C,\ small. By (3) and (4) we have

(5) (Q, (:-z) = z^O + p(C) + 0(|^-C|3).

The following proposition is proved in section 6.

PROPOSITION 3.2. — Jf<9/=0, then there exists a function h on
9D such that the function

f\ 1 f _ _ Q A 5 A / _ , , , .
^^^L^-^z-^^^

is the boundary values of a solution to Qu = /, and such that

||^||L-(^)^||/||Li(aD)+||/||Li(D).

We will need the following result about the solution of the d-equation
but postpone its proof until Section 5.

PROPOSITION 3.3. — Let D be a bounded domain in C71 with a
C2 boundary. Suppose that p, is a closed 2-form with coefficients in C°°(D),
and that the cohomology class offJ, in H2(D^ C) vanishes. Then there is a
solution w of

idw = fi

such that
IHlLi(D) + MiLK^) ^ ^II^HL^D),

where C is independent of [i.
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Now let 0 be a closed, positive and smooth (l,l)-form. Applying
Proposition 3.3 we obtain a solution w = wo,i + wi^o in L^^QD) D L1 (D)
to idw = 0, with <9wo,i = 0. Thus, by Proposition 3.2 and the discussion
in Section 1,

(f,\ 9p, 1 ( Q A S A wp,i
(6) 2Re4.2L<0,C-.}(5,.-C)+/l(')

is the boundary values of a solution to iQQu = 0, where ft can be estimated
byq|0|ki(D).

Next, consider the integral

f7) /* Q A ^ A W Q , !
^(0,C-^(^-c)'

Choose ^ € C'°°(C2 x C2), 0 < -0 < 1, which is equal to 1 for |z-C| <, e / 2
and -0 = 0 for \z-(,\ >_ e. Then (7) equals

(8) / ^ Q A ^ A W Q , ! /• QAgAwo, ,
v / ^'^+0(1^-013)'^' w (0,0-^(5,^-0
in view of (4) and (5). The second integral in (8) has no singularity since
its denominator is ̂  0 on the support of 1 - '0. Hence it can be estimated
byC||wo,i|[Li(aD).

To deal with the first term we need

LEMMA 3.4. — There exists a pluriharmonic function p(z) such
that

L^^2'
and

(9) IHlLi(aD) ̂  11^0,1 llLi(QD).

The proof will be found at the end of this section.

Now observe that since
i i ^ Q(k-C13)

v -h 0(|^-C|3) v v(v + 0(|^-C|3)
we can write the first term in (8) as

(10) f ^ Q A g A w p , , ^ ^Q(b-C|3) Q^AWQ,,v / Jw H2 ^ D ^ V l ^ l / H 2 ( ^ 4 - o ( | z - c | 3 ) •
We claim that the last term in (10) is dominated by a pluriharmonic
function.
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To establish the claim, note that if \z-(\ is small, then by (1)

(n) H ^ k-CI2 when (z, Q e 9D x 9D.
Moreover, since Q = S when 2; = <\

(12) IQA5|=0(|^-C|).
Hence (11) and (12) imply that

\Q^S\^^/\v\.
Thus

k-CPlQAgi ^ |̂
H^+Od^-Cl3)) - [^[2 '

and by Lemma 3.4, the claim is proved.

Consider now the first term in (10) :

[ ^.QAgAwQ,!
/ ' 1 1 0 "JQD H2

We will need a result whose proof is somewhat tedious, so we have
postponed it until Section 7.

LEMMA 3.5.

2Re[ ^^M^Re/ ̂  A ̂  A wp,i f \z-^\^\ da
JQD \V\2 JQD H2 JQ^' |u|2

Hence by Lemma 3.4, there is a pluriharmonic function p such that

(13) 2Re/ ^ Q A 5 A w o , i _ , 9^9^w^
JQD H2 r v JQD T \v\2

We will now show that the last term in (13) is negative, modulo a
function that can be estimated by a pluriharmonic function. Note first that

(14) dv A dv = 9v A 9v + 9v A 9v 4- 9v A 9v + 9v A 9v,

and by (2) the \ast 3 terms in (14) are at lea^t 0(\z-^\2). Thus by Lemma
3.4 we have

(15) / ^A^Awo^^ , ^d^A^Awo, ,
^^ 1^1 VaD |^|2 '

where g can be estimated by a pluriharmonic function. Applying Stokes'
theorem to the integral on the right side of (15) one obtains

(16) / ^ACfoAW()^ _ f ̂ dv/\dv/\wo^ f ^ dv A dv A WQ,I
JQD hi2 7^ ' \v\2 v j^ \^
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since 9wo,i = 0. The first integral on the right hand side of (16) is non-
singular and can be estimated by C\\WQ^\\LI(D)'

Now, if we use (14) on the last term in (16), we first note that for
bidegree reasons

9v A 9v A <9wo,i = 9v A 9v A <9wo,i = 0 on D.

Next, we observe that by (2), 9v A 9v = 0(\z-^), and so the integral

/* / 9v ^\9v /\ 9wQ^
I ' i \r)JD H2

can be estimated by C\\QWQ^\\L^{D)' Hence

Re /' /^^^o.i +c<Re f ̂ ^^o.i
JD H2 - Jo H2

Finally, we note that since wo,i = -wo,i and dw == z0, we have

{ 9v A 9v A gwo,i _ /' ^iQv f\Qv/\9
^ID h P ' " " y D H 2 '

where obviously the last term is negative.

Summarizing the results above, we have found that there is a pluri-
harmonic function p and a bounded function h so that

(-t7\ 9R. r 1 f Q A 5 A w o , i , ^ , 1 /• i9v/\9v/\0(17) 2Re fey^ (Q.C-.)^,.-O ̂ J+p< -^y, 1.12 '
where the left side of (17) is the boundary values of a solution to i99u = 0.
Since 6 is a positive form, it follows that u is plurisubharmonic and by the
maximum principle for plurisubharmonic functions, this implies that u < 0
in D.

In order to show estimate (1.2) it remains to prove that
„ f Q A S A wp,i i .
" L(0,C-.)<5,.-C)^1^) ~ 11^11^)-

since HWO^HL^QD) < I I ^HL^D)? ^d since by Proposition 3.2 and Lemma
3.4,

II^HL-^D) + llpllLi(QD) ̂  I|(?HLI(D).

For this it is sufficient by Fubini's theorem to show that

(IS} ( \Q^S\da{z}
{ ) -L \(Q,C-z}{S,z-^ < c7'
where C is independent of ^ € 9D.
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To prove (18) it is enough to assume that ^ is close to z. In this
case v = (5,^—C) when (^,C) ^ ̂  x c^- Moreover it is obvious that
1(^0-^)1 = 1(5',2;-C)[. Hence, by using (11) and (12) we find that

[QA5| „ 1
|<^C-^[|(5^-C)|-|(5^-C)|3/2'

Next, observe that by (2) and (4) we have

W^-C)|^=-9p(z).

Estimate (18) is now a consequence of the following lemma which we recall
from [Ra], (Lemma VII. 1.5).

LEMMA 3.6. — Let H(z^) be defined in a neighborhood of
D x 9D, H(z, C) ^ 0 , i f z ^ C and suppose that

2ReH{z^) > -p(C) + <^-C12 wAen \z-^\ < e

and
d ,̂C) = -9p(z).

Then
( da(C)
j^ 1^(^01° -

i f a < 2 , where C is independent of^eD.

This finishes the proof of Theorem 1.2.

Proof of Lemma 3.4. — First we note that by Fornaess embedding
theorem [Fo], there exists a C^-function <1>(2^), defined on D x D and
constants 5, e > 0 such that

(a) ^(z, Q is holomorphic in z

(b) $(^, C) 7^0 when z ^ C

(c) 2 Re ̂  C) > p(C) - p(^) + 6\z-(\2 if |^-C| < ^

and

(d) d^Q\^=-9p{z).

Now let

( \ 9po /' l^i I da [ 2Re^,C)|wo,i|da
^) = '^L ~W^ = L ———^OP———•

Then p{z) is clearly pluriharmonic. By (c) above we have for z close to ^

2Re^,C) ̂  |^-C12 when (z^) (E 9D x QD.
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We claim that

|$(^C)| - 1^,01 when (^,C) € 9D x QD

and |2:—(^| is small. Assuming the claim for the moment we have

„(,) s / ^M^H A,
JQD M

Estimate (9) follows by FubinFs theorem and the fact that
f da(z)

hD\^^\~ 'J9D\^^)\~ '

where C is independent of ^, by Lemma 3.6.

In order to prove the claim, we introduce real coordinates Xj^ 1 <
j < 3, for ^ 6 9D in a neighborhood of z = p € 9D such that Xj(p) = 0,
1 < j < 3, da;i] = dcp\ and a;2? 3;3 arbitrary. We will show that if H(z^)
is a function satisfying

(19) 2Reff (^C)>k-Cl 2

(20) dReH=-dp, dlmH^=dcp\^

then

(21) \H\ ~ |a:i | + a:| + a;J on 9D.

Assuming this, the claim is proved, since both v and ^ satisfy (19) and
(20).

To prove (21) we note first that since dlmH\ = dx\\ , we have
1m H = rz-i + 0(M2). Hence (19) implies

(22) |^ |~ |Imff |+|Reif |^ |a; i |+^+rrj .

Next, since dp = 0 on 9D, ReH = 0(M2). Thus

(23) |̂ | ~ | Im H\ + | Re H\ ̂  \x^\ + x\ + a;j.

By combining (22) and (23) we obtain (21) and the proof is complete.

4. Proof of Theorem 1.1.

Let 0 be the closed and positive (1, l)-current associated to the zero
set X. We assume first that 0 is defined in a neighborhood D of D. Then
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there is a sequence Oj of smooth, positive and closed (1, l)-forms that
converges weakly to 6 such that

/ ti0j d\^ [ t r O d X .
J D JD

Applying Theorem 1.2, we can find smooth real valued functions Uj < 0,
such that

^-<9(9^=6L,
7T J J

With ||̂ i(aD) ^II^ILI(P).

Since in particular

(1) A^-=Ctr^ ,

the solution of (1) with boundary values Uj is given by the formula

(2) U,(z) = / P(^C)^(C) ^(C) - C f G(^C)tr^ dA(C),
JQD J D

where G{z^ ^) and P(^, ̂ ) are the Green's function and the Poisson kernel
respectively.

Using the fact that H^jUL^aD) < C, we can find a subsequence of
Uj that converges weakly to a bounded measure u <, 0. Hence we get a
negative solution U of

^QQV = 0
7T

by taking limits in (2).

Now let h be a holomorphic function that defines X. Then

Q9(U- log \h\) =0,

so that a == U — log|/i| is pluriharmonic. Assume for the moment that
^(D, C) = 0. Then there is a real solution /? to

d(3 == i{9a - 9a) = d°a,

so that a + z/3 is holomorphic. Thus / = hexp(a + ^/3) is a bounded
holomorphic function with the same zero set as h.

If H1(D,C) 7^ 0, then we can no longer assume that d°a is exact.
However, we can get around this difficulty by means of the next lemma,
which is a modification of an idea from [AC].

LEMMA 4.1. — Let D be a bounded domain in C71 with a C2

boundary. If a € C°°{D) is pluriharmonic, then there exist a closed and
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smooth 1-form (p and a smooth real valued function f3 defined modulo 27rZ
such that \(p\ < C and

cfa - tp == d/3,

where C only depends on D and is stable under small C2-perturbations of
9D.

The proof will be found in the next section.

Using Lemma 4.1 on a = U — \og\h\ we get ^ and f3 so that
dca — (p == d/3, and \(p\ < C. In particular, 9(a + i/3) = y?o,i- Since
there are uniform estimates for the 9-equation in strictly pseudoconvex
domains, there is a function 7 with \^\ <^ C' such that 9^ = y?o i- Hence
/ = /lexp(Q/+^^—7—C'/) is a holomorphic function that defines X. Observe
that

\Qg\f\=U -Re^-C' <Q

and
I - log I/I da <, f (-U + 2C") da ^ C11,

JQD JQD
where C" again is a constant that only depends on D and is stable under
small C^-perturbations of 9D.

Assume now that 0 is only defined in D. Let pg =/?-!-£, where e > 0
is small and let De = {pg. < 0}. We can now assume that 0 is defined
in a neighborhood of D^. By the argument above we can find a bounded
holomorphic function f6 that defines X D Dg. Since the sequence f8 is
uniformly bounded, we can extract a subsequence which converges to a
bounded holomorphic function /. However, we need to verify that / is not
identically equal to zero.

Since Vs = log \fe\ ^. L^c^De) and Ve is negative we have

0 < / -V^a^C.
JQDe

We will apply Green's formula to the functions Ve and pe. Noting that
p^ = 0 on 9De we get

/ VQ^pe da = ( (V^pe - pe^V6) d\,
JQDe J D s

where v is the unit outward normal vector field on 9D^. Now, observe that
Ape > 0, since pe is strictly plurisubharmonic. Hence

O ^ f -V^pe d\= ( -pe^V6 d\+ f -V^vpe da ̂  C.
JOe JDe JQDe
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Thus
0 < / -V6 dX < C,

JDe
and letting e —>• 0 we obtain

0 < [ -V dX^C.
J D

This implies that / ^ 0 and thus / is the desired function. This proves the
theorem.

5. Proof of Proposition 3.3.

Since the statement of the proposition does not involve the complex
structure of C72, we may assume that D is a bounded domain in H271 with
a C^-boundary.

First, let D be contractible and let ^ be a smooth and closed 2-form
on D. If ^(a;, t) : D x [0,1] —>• D is a smooth homotopy between the identity
map and the constant map x —> p, then

r 1

w == ^*/z
Jo

is a smooth solution of

(1) dw = ̂

where -0* is the pullback of '0. For instance, if D is convex and 0 G D, then
one can take ^{x^ t) = tx. In this case it is easy to see that the estimate

(2) [ H da + / H dX ̂  C ( \p.\ dX
JQD J D J D

holds, where C is independent of /z.

In the general case D is locally C^-diffeomorphic to a convex domain
and one can locally solve (2) with the required estimate. In order to
complete the proof we need to piece together these local solutions into
a global one such that (2) holds.

Let FQ be the sheaf of smooth and closed 1-forms on D, F\ the sheaf
of smooth 1-forms on D and ^2 the sheaf of smooth and closed 2-forms on
D. Then

0 —— FQ -^ J î -^ ^2 — 0
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is a short exact sequence of sheaves. By standard cohomology arguments
if follows that there are canonical isomorphisms such that

(3) H°(D^^/dH°(D^,) ̂  H\D^o) ̂  H\D^C).

The rest of the argument consists in using the isomorphisms in (3) to
trace the problem back to ^(Z^C). By means of Cech-cohomology this
is then transformed into a coboundary problem, which turns out to be a
finite dimensional linear problem.

Let U = {^lj} be a finite covering of I), such that f^-, (}jk = ̂  H Cljc
and ^Ijki = ̂ j n Ofc n f2^ are all diffeomorphic to convex sets. Let Wj be a
smooth solution in ̂  of dwj = 11 such that

(4) / \Wj\ da-{- \Wj\ d\<:C \^\ dX.
JQDnflj Jonflj J D

If Q.j^ 7^ 0, then ajk = wj —w^; is a closed 1-form on f2^ and thus a = (djk)
defines a 1-cocycle with values in FQ. Note that

(5) ( \djk\ da + [ \djk\ d\ < C [ \^\ d\
jQDn^ijk JDnQjk ^D

where C is independent of /^. In the same way we can solve dbjk = cijk on
^tjk so that the estimate (5) also holds for bjk-

Now,
Cjke = bjk + bke. + btj = (6bjk))jk£

is by definition a cocycle with values in C, since

dcjk£ = (6(dbjk))jke = (6{ajk))jk£ = 0.
Hence (c^) defines an element in ^(Z^C), and by the isomorphisms in
(3), this element must, in fact, be zero since ^ is assumed to be exact.
Now, since HP{Q,I,C) = 0, for each multi index J, U is a Leray cover with
respect to the sheaf C. Therefore ^(P.C) = ^(^C), see [Gu]. Hence
(cj/c^) is a coboundary, which means that there is a 1-cochain Cjk such that
6{cjk) = (c^).

Observe that, since this is a finite dimensional linear problem and
\Cjk£\ < C, we can choose (c^) such that |c^| ̂  C. If fjk = bjk - Cjk, then

Sfjk = Sbjk - SCjk = Cjk£ - Cjk£ = 0

and
dfjk = dbjk - dcjk = dbjk == a^-fc,

since cjk are locally constant.
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Let {ipk} be a partition of unity subordinated to the covering {^}
and let

9j = dY^(pkfjk'
k

Obviously gj is a closed 1-form on Q,j and we have

g^-gn = d^(pk{fjk-fj£) = d^^kfje = ̂  = d{b^-Cji) = d6^ = a^.
k k

Moreover gj satisfies estimate (4) since

9j = d^{Pkfjk = ̂ [(d^k)fjk + ^Ojfc]
k k

and both /j^ and ajk satisfy (4).

Finally, since
Wj - we = o^ = ̂  - ̂

we can define a global solution w on D by letting w == Wj — gj on Oj. Then

dw = dwj — dgj = dwj = ^ on f^j

and w satisfies (2) as desired.

Proof of Lemma 4.1. — We use the same notation as above. First
we solve daj = dca in f^-. Then bjk = oj — Ok is a cocycle with values in
C. Next, we choose Cjk € 27rZ such that

\bjk - Cjk\ < 27r for all j, A;.
Then 6(bjk — Cjk) is a cocycle with values in 27rZ. Moreover we have

\^Jk-Cjk)\ <67T.

Consider the coboundary equation

6ejk =6(bjk -Cjk)'
The right hand side is 27rZ-valued, and is bounded by C. Moreover there
is a solution with values in 27rZ. In fact, —Cjk is a solution.

Now, since the cover of D is finite there are only a finite number of
6(bjk—Cjk) with values in 27rZ and bounded by C. Hence there is a solution
ejk with \ejk\ < C1\ where C' is a new constant, which only depends on
the number of elements in the cover of D. If / = c + e, then / has values
in 27rZ. Moreover \b - f\ < C and 6(b - f) = 0.

Let {ipk} be a partition of unity subordinated to {OA;} and let

^ = ̂ ^k(bjk - fjk) on Uy.
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Then
hj - hk = bjk - fjk = Oij -ak- fjk'

Let /? = Oj — hj on ̂ . It follows that

(3 =aj - hj = Ok - hk + /jfc on f^,

so that /? is well-defined modulo 27rZ. Finally,

d(3 = da — dh = d°a — dh.

If we put (p = d/i, then (p is a 1-form, |y?| ^ C and d/3 = dca — (p. Thus the
lemma is proved.

6. Solution of the 9-equation.

Our aim in the present section is to obtain the solution of the 9-
equation needed in the proof of Theorem 1.2. Let us first recall some
standard notation and facts about the Cauchy-Leray kernels, which will
be used in the sequel. For the proof of these facts, we refer to e.g. [Ra].

As before let S{z, C) be a C1 map satisfying

(1) \S\ ̂  \z-C\
and

(2) \{s,z-c}\ ̂ i^-cr
uniformly for C € D and z in any compact subset of D. With S we identify
the form S = ̂  Sjd^j - Zj).

The Cauchy-Leray kernel associated to S in C2 is denned by
S / \ d S

^•=1^^-
We shall often write K for K[S}. It is easy to see that

(3) dK = 0 for C ̂  z,

and if y? is a scalar valued function, nonvanishing for C 7^ z? then

(4) K[^S]=K[S].

Denote by Kp^q the component of K of bidegree (p, q) in z and (2 —p, 1 — q)
in ^. If / is a (0, l)-form, then Koppelman^s formula holds :

(5) f=———\( K^/\f- f K ^ / \ 9 f - 9 f ^o.oA/1.
^ L JQD J D J D J
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Now suppose that S(z^} is holomorphic in z G D when ^ C (9.D.
Then it follows from (5) that the function

(6) u{z)=^ I ^[5]A/

is a solution of 9u == f if 9f = 0.

The map that we constructed in Section 3 is only holomorphic in z
near the diagonal, hence the function (6) is not a solution to the <9-equation.
In fact, S does not satisfy (2) either. However, we can use instead

^i^3-^-^
which by the dilation invariance (4) of the kernels, is equivalent to S for
CC<9P.

The following lemma shows that (6) is not far from being a solution.

LEMMA 6.1. — Let f be a closed (0, l)-form with C°° coefficients
and let

u{z)=^fK^[S}^f.

Then there is a function h € C°°(D) such that

(7) 9{u-h)=f

and

(8) ML^^D) ̂  \\f\\L^9DY

Proof. — Since S is holomorphic in z near the diagonal when ^ C QD^
KQ^ [S] is smooth for ^ € 9D. Hence by a well known theorem, see [Ra],
there is a function h € C°°{D) such that

9h=—— f K^[S}^f471 JQD
and by Koppelman's formula (7) holds. Estimate (8) follows immediately.

Next, we give a relation between kernels with different sections.

LEMMA 6.2. — Suppose that S and Q satisfy (1) and (2). Let f
be a (0, l)-form such that 9f = 0. Then
(9) / (o i^f^f ^= f ̂ Q^f-1 ^o^iA/.JQD (^C-^M^-O JD JD
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Proof. — First we claim that

(10) ^[(Q.C-^^-C)]^0-0^-^0^-
To establish (10) consider the map

,^__^+(__^for0^<l .(,5,2-0 <<9,C-z)
Then by (4) K[t\\ = t\ A df,\. Here d is taken with respect to A and ^.
Now, (3) gives dK[t\\ = 0, so that if we write K = K\ + K ' where K\ is
the component of K that contains dX, we get d^K = -d\K'.

Define

H= f Kx.H= f Kx.
oJo

A simple calculation shows that

H=———Q^S———
{Q,^-z}(S,z-<:}

and
d^H = I d^ - - / d^K' = A:[<3] - ̂ [6'],

Jo Jo

which proves the claim.

An application of Stokes5 theorem gives

/ d ^ H / \ f = { H / \ f .
J D JQD

In view of (10), the result follows.

We remark that (9) can be considered as a limit case of solution
formulas with weights, see [BA]. Similar formulas have also been used by
Henkin [He2].

Now observe that the map Q, constructed in Section 3, satisfies
^cO^C) = 0 for 2; G 9D in a neighborhood of the diagonal. Hence the
kernel ^0,0 [Q] is nonsingular for z G 9D and it follows that we have the
estimate

II / Ko^[Q] A /||Loo(aD)^ ||/HLI(D).
JD

Combining Lemma 6.1 and Lemma 6.2, we obtain Proposition 3.2.
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7. Proof of Lemma 3.5.

In this section it will be convenient to use the notation rj = z—C,
r\ Q2

77 = -77, p^(^) = ,o—(^ Pjfc(^) = ^ ^ (^), and so forth. We assun

here that \r\ < e.

77 = -77, pj(z) = Q^(^), Pjfc(^) = ^ „ (^), and so forth. We assume

Let us first show that

(1) QA5=-^A9p+0(H 2 ) .

To prove (1), note that since S and Q are (1,0) forms,

Q A S = (Qi62 - Q25i)rfCi A dC2.
Then we have, disregarding terms of order ^ 2 in 77,

QlS2= L(^)+J(pll(^)m+Pl2(2;)772)1 [p2(C)+J(p2l(C)77l+P22(C)772)1 + • • •

= pi (^)p2 (C) + j [(pi (^)p2i (C) - p2 (C)pii W]m

+ |[(Pl(^)P22(C) - P2(C)P12(^]772 + •

and so, by symmetry, we obtain

QlS-2 - Q2Sl = Pl(^)p2(C) - Pl(C)P2(^)

+ ^[Pl(2;)p21«) +Pl(C)p2l(20 - (P2(C)P11(^) +P2(^)P11(C))]7?1

(2) + j[pl(^)p22(C) + P1(C)P22(^) - (P2(C)P12(2:) + P2(20P12(C))]772 + • • •

= pi(^)p2(C) - pi(C)p2(^) + [pi(C)p2i(^) - (p2(C)pn(20hi
+ [P1(C)P22(^) - P2(C)P12(^)]772 + 0(\rj\2).

On the other hand

-9^V((,Z) Aap(C) = [(Pl(^) +Pll(2;)7h +P12(^2)P2(C)

(3) - (p2(2;) 4- Pl2(^)m + P22(^)??2)pl(C)]^Cl A dC2

= [pl(2;)p2«) - Pl(^)p2(z) + (Pl«)pl2(^) - P2(C)pll(^))m

+ (P1(C)P22^) - P2(C)pl2(^))y72]c?Cl A dC2.

By comparing (2) and (3) we obtain (1).

Now observe that since dp = 0 on <9-D, we have

(4) / 9v A 9p/\wo^ = — / 9v/\9p/\wo^.
JQD ' JQD

It follows from the definition of v that

(5) 9v=-Qp^ao^
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where |ao,i| = 0(H). Inserting (5) into the last integral of (4) we get

(6) - / 9v A 9p A wo,i == / 9v A 9v A wo,i - / Qv f\ 00,1 Awo,i.
./̂ D JaD ' JBD

Using (5) again on the last integral of (6) we can write

/ 9v A ao,i A wo,i = - / 9 p / \ ao,i A wo,i + / ai,o A OQ i A WQ i,
JQD JQD JOD

where |ai,o A ao,i| = 0(\r]\)2). Note that for bidegree reasons

/ 9p A ao,i A wo,i = / d p / \ ao,i A Wo,i = 0.
JQD JQD

Thus

(7) / 9v A ao,i A wo,i = / Od^l^lwo.il da.
JOD JQD

By combining (4), (6) and (7) we obtain

(8) { 9vt\Qpf\w^ =- { 9z; A QUA wo.i-h f 0(^)^0^ da.
JOD JQD JOD

(1) and (8) finally give

2Re/ ^ A ^ A w o . i ^ ^ ^ A ^ A w o . i ^ / ' |.-^|wo,i|da
JQD 1^1 7aD l^l2 7 H2

and the proof is complete.
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