Le phénomène de termes d’erreur anormalement petits dans le problème des points entiers dans un polygone est étudié en dimension 2. Pour des polygones irrationnels, les erreurs sont exprimées en termes de propriétés diophantiennes des pentes des côtés. Il en résulte pour le nombre de points entiers dans le dilaté de rapport , de certaines classes de polygones irrationnels que le terme d’erreur est borné avec ou comme avec arbitraire.
The phenomenon of anomaly small error terms in the lattice point problem is considered in detail in two dimensions. For irrational polygons the errors are expressed in terms of diophantine properties of the side slopes. As a result, for the -dilatation, , of certain classes of irrational polygons the error terms are bounded as with some , or as with arbitrarily small .
@article{AIF_1993__43_2_313_0, author = {Skriganov, Maxim}, title = {On integer points in polygons}, journal = {Annales de l'Institut Fourier}, pages = {313--323}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {43}, number = {2}, year = {1993}, doi = {10.5802/aif.1333}, zbl = {0779.11041}, mrnumber = {94d:11077}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1333/} }
TY - JOUR AU - Skriganov, Maxim TI - On integer points in polygons JO - Annales de l'Institut Fourier PY - 1993 SP - 313 EP - 323 VL - 43 IS - 2 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1333/ DO - 10.5802/aif.1333 LA - en ID - AIF_1993__43_2_313_0 ER -
Skriganov, Maxim. On integer points in polygons. Annales de l'Institut Fourier, Tome 43 (1993) no. 2, pp. 313-323. doi : 10.5802/aif.1333. https://aif.centre-mersenne.org/articles/10.5802/aif.1333/
[CV] Nombre de points entiers dans une famille homothétique de domaines de ℝn, Ann. Sci. École Norm. Sup., 4e série, 10 (1977), 559-576. | Numdam | Zbl
,[HL] Some problems of Diophantine approximation : the lattice points of a right-angled triangle, part I, Proc. London Math. Soc. (2), 20 (1922), 15-36; part II, Abh. Math. Sem. Hamburg, 1 (1922), 212-249. | JFM
, ,[Kh] Einige Sätze über Kettenbrüche, mit Anwendungen auf die Theorie der Diophantischen Approximationen, Math. Ann., 92 (1924), 115-125. | JFM
,[KN] Uniform distribution of sequences, Wiley, New-York-London, 1974. | Zbl
, ,[L] Introduction to diophantine approximations, Addison-Wesley, Mass., 1966. | MR | Zbl
,[P] Die Lehre von den Kettenbrüchen, 3 Aufl., Teubner, Stuttgart, 1954. | Zbl
,[R1] A lattice point problem I, Trans. A.M.S., 121 (1966), 257-268 ; II, Trans. A.M.S., 125 (1966), 101-113. | Zbl
,[R2] On the Fourier transform of the indicator function of a planar set, Trans. A.M.S., 139 (1969), 271-278. | MR | Zbl
,[Sch] Diophantine approximation, Lecture Notes in Math., 785, Springer-Verlag, Berlin, New York, 1980. | MR | Zbl
,[S1] On lattices in algebraic number fields, Dokl. Akad. Nauk SSSR, 306 (1989), 553-555, Soviet Math. Dokl., 39 (1989), 538-540. | MR | Zbl
,[S2] Lattices in algebraic number fields and uniform distributions modulo 1, LOMI Preprint 12-88, Leningrad, (1988), Algebra and analysis, 1, N2 (1989), 207-228, Leningrad Math. J., 1, N2 (1990), 535-558. | Zbl
,[S3] Construction of uniform distributions in terms of geometry of numbers, Prépublication de l'Institut Fourier, n° 200, Grenoble, 1992.
,[S4] Anomaly small errors in the lattice point problem, (in preparation).
,Cité par Sources :