A central limit theorem on the space of positive definite symmetric matrices
Annales de l'Institut Fourier, Volume 42 (1992) no. 4, pp. 857-874.

A central limit theorem is proved on the space 𝒫 n of positive definite symmetric matrices. To do this, some natural analogs of the mean and dispersion on 𝒫 n are defined and investigated. One uses a Taylor expansion of the spherical functions on 𝒫 n .

On démontre un théorème de la limite centrale sur l’espace des matrices symétriques définies positives. Dans ce but on introduit et étudie certains analogues de la moyenne et de la dispersion d’une mesure. On utilise un développent de Taylor des fonctions sphériques sur l’espace considéré.

@article{AIF_1992__42_4_857_0,
     author = {Graczyk, Piotr},
     title = {A central limit theorem on the space of positive definite symmetric matrices},
     journal = {Annales de l'Institut Fourier},
     pages = {857--874},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {42},
     number = {4},
     year = {1992},
     doi = {10.5802/aif.1312},
     zbl = {0736.60025},
     mrnumber = {93m:60023},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1312/}
}
TY  - JOUR
AU  - Graczyk, Piotr
TI  - A central limit theorem on the space of positive definite symmetric matrices
JO  - Annales de l'Institut Fourier
PY  - 1992
SP  - 857
EP  - 874
VL  - 42
IS  - 4
PB  - Institut Fourier
PP  - Grenoble
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.1312/
DO  - 10.5802/aif.1312
LA  - en
ID  - AIF_1992__42_4_857_0
ER  - 
%0 Journal Article
%A Graczyk, Piotr
%T A central limit theorem on the space of positive definite symmetric matrices
%J Annales de l'Institut Fourier
%D 1992
%P 857-874
%V 42
%N 4
%I Institut Fourier
%C Grenoble
%U https://aif.centre-mersenne.org/articles/10.5802/aif.1312/
%R 10.5802/aif.1312
%G en
%F AIF_1992__42_4_857_0
Graczyk, Piotr. A central limit theorem on the space of positive definite symmetric matrices. Annales de l'Institut Fourier, Volume 42 (1992) no. 4, pp. 857-874. doi : 10.5802/aif.1312. https://aif.centre-mersenne.org/articles/10.5802/aif.1312/

[1] J. Faraut, Dispersion d'une mesure de probabilité sur SL(2,ℝ) biinvariante par SO(2,ℝ) et théorème de la limite centrale, exposé Oberwolfach, 1975.

[2] J. Faraut, A. Koranyi, Jordan Algebras, Symmetric Cones and Symmetric Domains, to appear.

[3] R. Gangolli, Isotropic infinitely divisible measures on symmetric spaces, Acta Math., 111 (1964), 213-246. | MR | Zbl

[4] S. Helgason, Groups and Geometric Analysis, Academic Press, New York, 1984. | Zbl

[5] G.A. Hunt, Semi-groups of measures on Lie groups, Trans. Amer. Math. Soc., 81 (1956), 264-293. | MR | Zbl

[6] F.I. Karpelevich, V.N. Tutubalin, M.G. Shur, Limit theorems for the compositions of distributions in the Lobachevsky plane and space, Theory Prob. Appl., 4 (1959), 399-402.

[7] B. Kostant, On convexity, the Weyl group and the Iwasawa decomposition, Ann. Sci. Ecole Norm. Sup., 6 (1973), 413-455. | Numdam | MR | Zbl

[8] D.St.P. Richards, The Central Limit Theorem on Spaces of Positive Definite Matrices, J. Multivariate Anal., 29 (1989), 326-332. | MR | Zbl

[9] A. Terras, Noneuclidean Harmonic Analysis, the Central Limit Theorem and Long Transmission Lines with Random Inhomogeneities, J. Multivariate Anal., 15 (1984), 261-276. | MR | Zbl

[10] A. Terras, Asymptotics of Special Functions and the Central Limit Theorem on the Space Pn of Positive n × n Matrices, J. Multivariate Anal., 23 (1987), 13-36. | MR | Zbl

[11] A. Terras, Harmonic Analysis on Symmetric Spaces and Applications II, Springer-Verlag, New York, 1988. | MR | Zbl

Cited by Sources: