Nous étudions le spectre de l’opérateur de Laplace sur les ensembles algébriques et semi-algébriques dans .
The spectrum of the Laplace operator on algebraic and semialgebraic subsets in is studied and the number of small eigenvalues is estimated by the degree of .
@article{AIF_1992__42_1-2_249_0, author = {Gromov, Mikhael}, title = {Spectral geometry of semi-algebraic sets}, journal = {Annales de l'Institut Fourier}, pages = {249--274}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {42}, number = {1-2}, year = {1992}, doi = {10.5802/aif.1291}, zbl = {0759.58048}, mrnumber = {93i:58157}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1291/} }
TY - JOUR AU - Gromov, Mikhael TI - Spectral geometry of semi-algebraic sets JO - Annales de l'Institut Fourier PY - 1992 SP - 249 EP - 274 VL - 42 IS - 1-2 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1291/ DO - 10.5802/aif.1291 LA - en ID - AIF_1992__42_1-2_249_0 ER -
Gromov, Mikhael. Spectral geometry of semi-algebraic sets. Annales de l'Institut Fourier, Tome 42 (1992) no. 1-2, pp. 249-274. doi : 10.5802/aif.1291. https://aif.centre-mersenne.org/articles/10.5802/aif.1291/
[At] Resolution of singularities and division of distributions, Comm. Pure Appl. Math., 23 (1970), 145-150. | MR | Zbl
,[Ber] Moduli over the ring of differential operators, Funct. Anal. and App.
,[BerGel] Meromorphicity of the function pλ, Funct. Anal and Applic., (Russian), 3-1 (1969), 84-85.
, ,[Bj] Rings of differential operators, North-Holland Publ. Co. Math. Libr., 21 (1979). | MR | Zbl
,[Che1] A lower bound for the smallest eigenvalue of the Laplacian, Problem in Analysis, A symposium in honor of Bochner (1970), Princeton, pp 195-199. | MR | Zbl
,[Che2] On the Hodge theory of Riemannian pseudomanifolds, Proc. Symp. Pure Math., AMS Providence R.I., XXXVI (1980), 91-146. | MR | Zbl
,[Che3] Spectral geometry of singular Riemannian spaces, J. Diff. Geom., 18-4 (1983), 575-657. | MR | Zbl
,[Gro1] Paul Levy's isoperimetric inequality (1980) Preprint, IHES.
,[Gro2] Dimension, non-linear spectra and width, Springer Lecture Notes, 1317 (1988), 132-185. | MR | Zbl
,[Gro3] Entropy, homology and semialgebraic geometry (after Yomdin), Astérisque, Soc. Math. France, 145-146 (1987), 225-241. | Numdam | MR | Zbl
,[Gro4] Curvature, diameter and Betti numbers, Comm. Math. Helv., 56 (1981), 179-195. | MR | Zbl
,[Kho] Fewnomials, Translation of Math. Monographs, V. 88, AMS, 1991. | Zbl
,[Mil] On the Betti numbers of real varieties, Proc. Am. Math. Soc., 15 (1964), 275-280. | MR | Zbl
,[Tho] Sur l'homologie des variétés algébriques réelles. In Differential and Combinatorial Topology. A symposium in honor of M. Morse, Princeton University Press, 1965, pp. 252-265. | Zbl
,[Yom] Global bounds for the Betti numbers of regular fibers of differential mappings, Topology, 24-2 (1985), 145-152. | MR | Zbl
,Cité par Sources :