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SPECTRAL GEOMETRY OF SEMI-ALGEBRAIC SETS

by Mikhael GROMOV

To the memory of
Claude Godbillon and Jean Martinet

0. Introduction.

This lecture is motivated by several conversations we have had with
Jeff Cheeger about the eigenvalues of the Laplace operator A on algebraic
and semi-algebraic (sub)sets in RV. Our interest was triggered by a question
by Paulo D. Cordaro (in a letter addressed to one of us) concerning the
possible rate of decay of the first eigenvalue \; of the Laplace operator on a
non-singular connected level V; = f~1(t), t € R, of a polynomial function f
on the Euclidean sphere, where V; approaches the singular variety f=(tcr;)
as t converges to a critical value t.,; of our f : S¥~1 — R. More specifically
what Cordaro wanted to know was (if I remember it right) the following
lower bound on A\; = A1(V;), (we choose the sign of the Laplacian such that
Ai > 0)

(*) )\IZC[t—tcm- la

for some positive constants ¢ and a. (Possibly, Cordaro knew the proof of
(*) and only wanted to check if this could be found in the literature.)

The answer to Cordaro’s question follows from the following known
properties of the real algebraic varieties on one hand and the standard
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bounds on A; (V) in terms of the geometry of V on the other hand. Namely
the real algebraic geometry tells us that

0.A;. The gradient of the polynomial f defining V; does not decay too fast
ast — tcr;. Namely

inf || grad f(v) || > Blt — teril?
veEV;

for some positive b and 3, by the the Lojasiewicz inequality.

0.A2. The (N — 2)-dimensional volume of V; (recall that N — 2 = dimV};)
is bounded by

Vol V; < consty deg f

where deg f denotes the algebraic degree of the polynomial f defining V;.
In fact, by Bezout theorem almost every great circle meets V; at most
at deg f points and the above inequality follows from Crofton’s formula
expressing the volume as the average number of the intersection points of
the subvariety in question with the great circles.

Now, since the first and second derivatives of f on SV ~1 are bounded,
the Lojasiewicz inequality implies that the sectional curvatures K of V; (for
the induced Riemannian metric) are bounded by

K (V)] < blt — torsl”
and the injectivity radius of V; is bounded from below by
Inj Rad(V;) > b"|t — ters]® .

These two inequalities together with the above bound on Vol V; imply the
required bound (*) on the first eigenvalue \; (V;) according to the following
standard Riemannian estimate.

0.B. Let V be a compact connected Riemannian manifold of dimension
m > 1. Then the first eigenvalue \; = \1(V) admits the following lower
bound in terms of the volume of V, the injectivity radius and the supremum
| K| of the absolute values of the sectional curvatures of V,

(%x) A1 > const,, p?™~2(Vol)~2

for
p = min(Rad, |K|~%).
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Idea of the proof. — First we rescale the metric by p and thus reduce
the situation to the case where |[K| < 1 and Rad > 1. Then V can

be covered by k < const], Vol balls of radius l Each of these balls has
an “almost standard” geometry which is close to the geometry of a fixed
Euclidean ball. It follows that A; > const, k=2 . In fact, the worst case
is where the balls are arranged along a line and V looks like a cylinder
Vo X [0, k] for some fixed manifolds V; (e.g. an Euclidean (m — 1)-ball of
unit size). See Fig. 1 below.

<38383338880

Fig. 1

Notice that for such cylinder like manifolds V the first eigenvalue is
roughly proportional to k=2 ~ (Diam)~2.

0.B’. Remark. — The above estimate remains valid for a significantly
more general class of manifolds. Namely, if a closed connected Riemannian
manifold V has Ricci V > —1 and can be covered by k unit balls, then
again

A1(V) > const,, k2,

and a similar estimate holds for higher eigenvalues \;(V') (see Grol)).

0.C. Non-local estimates on \;. Now the proof of the inequality A\, (V;) >
c|t — tri]* can be summarized as follows. First, Lojasiewicz’ inequality
provides us with a bound on the local geometry of V; (first of all on the
curvature of V;) and then the above Riemannian geometric inequality (*x)
applies.

At this stage we ask ourselves whether the bound on the local
geometry (in particular on the curvature) is truly needed in our case. For
example, may \; (V) satisfy a universal bound A;(V;) > € > 0 independent
of |t —t.ri| even though the curvature of V; blows up for t — t..; 7 Of course,
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A1(V;) does go to zero in some cases as seen in Fig. 2 below where V;_, is
reducible.

P~

Fig. 2

On the other hand we shall see later on, that if V;__, is irreducible (in
the category of real analytic varieties) and dimV;_ ; = dim V; then, in fact,
AM(Vt) > € > 0ast — te; . The proof of that can hardly be obtained by the
traditional local tools of the Riemannian geometry which rely very much
on curvature estimates and (or) the injectivity radius. On the other hand,
the geometric theory of semialgebraic sets provides us with a sufficient
information to control the eigenvalues of V;. In fact, we may even include
singular varieties V' in our discussions, such as V;_,, for example, and
estimate certain eigenvalues in terms of some numerical invariants of V.
Here is a detailed list of topics we are going to approach (in a rather
speculative manner) in this lecture.

Acknowledgement : I am thankful to the referee for correcting several errors.

Contents

1. Spectra and related invariants for singular sets, measures and partitions.
2. Lower bounds on A\;(V) .

3. Algebraic approximation and localization of eigenfunctions; computabil-
ity of A;(V).

4. Spectra of semi-algebraic families; continuity and analyticity of \;(V)
in t.

5. Basic geometric means for estimating ); : product inequalities, decom-
position relations and measures in the spaces of curves; monotonicity and
quasiconvexity.

6. The spectrum of the Laplace operator on forms.
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7. Low and high frequences.
8. Spectra of non-algebraic sets from the semi-algebraic viewpoint.

9. Geometric uses of the spectrum.

1. Spectra and related invariants for singular sets,

measures and partitions.

The notion of the spectrum makes sense for an arbitrary metric space
whenever we have a measure u on this space [Gro2]). Here we concentrate
our attention on “algebraically defined” measures in the Euclidean space
RY, where the basic example is the usual m-dimensional (Hausdorff)
measure 4 = gy an m-dimensional semi-algebraic subset V in RN. (If V
consists of several irrreducible components V; of different dimensions m; we
assign to each component the respective Hausdorff measure of dimension
m,)

Given a measure p on RY we define the following two Lo-norms (or
rather, semi-norms)

1
2
o ll= l / |<Pl2du‘
RN

and .
2z
| grade [l,= | [ Varadeo 2 dul
RN

for all C'-functions ¢ : RV — R. (Notice that the above measure u = uy
has suppp =V and so [gy ...dp = [, ...dp.)

Now with a pair of quadratic functions (forms)

p—llel2 and | grade |2

one can define the spectrum of p1 (and thus of V for 4 = py) as the spectrum
of the form || grady ||2 relative to || ¢ ||2 . For example, if p equals py for
a smooth subvariety V in RY we recapture the spectrum of the Laplace
operator on V for the induced Riemannian metric.

Observe that the smallest eigenvalue \¢ equals zero whenever u has
finite total mass (e.g. V' is compact) since the constant functions ¢ are in
L, for mass pu < 0o.
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At this moment, we assume p = py for a compact V and define the
next eigenvalue \; as the best constant A in the Poincare inequality

(*) e la< X~ |l grade |13 -

More precisely, A1 equals the supremum of those A for which (x) is satisfied
by all C'-functions orthogonal to the constants, i.e. having

/(pd/.t=0.

Similarly, one defines \; for all i = 1,2..., as the maximal (or better to say
supremal) X for which there exist functions 1y, ...%;_1 , such that every ¢
orthogonal to ; ,

/‘P‘l’adll=0, J=0,...,i-1,
satisfies

(+%) T < A7 I grade |15 -
(Here and below [ ...du is an abbreviation for fgy ...du.)

Remarks. — (a) The inequality (*x) with A = \; becomes sharp if
we take the j-th eigenfunction for ¥; , j = 0,1...,i—1. In fact, one usually
defines A; using eigenfunctions, but we prefer to avoid any analysis (and
linear algebra) at this stage.

(b) The standard geometric approach to a lower bound on A; on V'
consists in finding an appropriate cover of V' by balls By, ..., B;_; and then
proving (*x) with the best possible A for functions ¢ satisfying

/ pdpu=0, j=0,...1—1,
B.

J
which corresponds to the orthogonality to the characteristic functions 9;
of B j -

(c¢) A more conceptual approach to the definition of A; appeals to the
Morse Theory of the energy function E : ¢ —| grade ||u/|| ¢ |lu- The
function E is homogeneous and so lives on a certain (infinite dimensional)
projective space ®. This space carries a non-trivial Z;-homology in each
dimension ¢ and A; may-be defined as the first value of A for which the
level E~!(—00,)] C ® captures a non-trivial i-dimensional circle in ®.
This approach allows one to extend the notion of the spectrum to non-
quadratic functions, such as L,-norms for p # 2, and it also suggests a
variety of other generalizations (see [Gro2]).
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1.A. Isoperimetric profile of p. The basic ingradient implicit in the above
spectral discussion was the (linear) operator ¢ — grad ¢ or, more invari-
antly, the exterior differential on functions, ¢ — dy . Then one can try
other linear operators, among which the most interesting are the exterior
differentials and the forms of degree > 1 briefly looked upon in §6 (and the
Dirac operator on spinors which we do not discuss at all in this lecture).
Now we want to dualize d and look at the (geometric) boundary operator
0 on chains and currents. We limit ourselves to the special case of the top-
dimensional chains in RN represented by domains and we want to relate
the p-mass of these to the (appropriately defined) mass of their boundaries.

1.A;. Mass of a hypersurface. For an arbitrary subset H C RN we denote
by Hye C RY the e-neighbourhood of H and let

Wy (H) =limsup € w(Hye)
€—

and
u_(H) =lim i(I)lf e 1u(Hyo).
€—

If 4 and H are sufficiently regular (e.g. p is of algebraic origin and H is a
real analytic subset) then p/, (H) = p_ (H), and in such a case we use the
notation y/(H). Moreover, if u = p(V) for a semi-algebraic V and H is a
sufficiently smooth (e.g. real analytic) compact hypersurface in V' then

0 < 'y (H) = p'_(H) < oo,
and, in fact, p’'(H) equals the usual (m — 1)-dimensional measure of H.

1.A,. Isoperimetric profile. Consider all subsets W C RY of a given y-mass
a and let Is,(a) denote the infimum of the masses of their topological
boundaries,

Is(a) =ivr%,f p'(0W),
where, in order to make sense, we take the infimum of those W with
w(W) = a which have p!, (0W) = u’_(OW).
There are obvious modification of this definition such as
(i) using p!, or p’ instead of p’ and allowing all W with u(W) = «a;
(ii) measuring W by

He & (Wie) — (W)
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for a fixed € > 0, next taking the infimum of . over W and only then
passing to the limit for ¢ — 0.

(iii) Restricting to subsets W in V' = suppp and (more importantly)
taking the topological boundary 8W in V rather than in RV.

It is not hard to see, however, that for algebraically defined measures
u all these definitions lead to the same isoperimetric profile (function)
Is(a) = Isy(a) of p.

1.Ag. Cheeger’s inequality. The first eigenvalue \; admits the following
lower bound in terms of the function Is(a) in the interval [0,0] for

B = 3u(RN),

1 2
> i -1 .
EHE TRl

In other words the isoperimetric inequality
w(W) < cp'(OW),

for the subsets W C RV of mass u(W) < %u(RN ) implies the Poincare
inequality

1
/ Pdu< g / | grad o |12 du

for the functions ¢ orthogonal to the constants.

1.A4. Remarks. — (a) Cheeger proved his inequality for smooth Rieman-
nian manifolds (see [Chel]), but his argument immediately extends to all
sufficiently regular measures u in RV, e.g. to u = py for compact semi-
algebraic V C RV.

(b) One can define further isoperimetric profiles using i-tuples of
subsets {W1,...,W;} of prescribed masses a; = u(W;), j =1,...,1i, and
satisfying some extra conditions such as

(i) W; cover RV (or at least the support of p);
(ii) W; cover supp p with a given multiplicity;
(iii) W; are mutually disjoint.

Then one can somehow measure the total size of the boundaries of
W;, say by
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!

p' = max u'(OW;)
Jj=1,...,%
or by
i
u = Z w(dW;),

Jj=1

i

or else by the measure p’ (or p) of the complement to the union (J Wj
Jj=1

in case (iii). Finally, one may take the infimum of such a p’ over all

{Wi,...,Wj...,W;} with given a; = u(Wj;) and obtain the isoperimetric

profile (function) in the variables ay,...,q;,

Is(ay,...,q;) = inf p/{Wy,...,W;}.

(Such multivariable profiles are sometimes (implicitly) used in estimating
the eigenvalues \;, compare [Grol].)

1.B. Partitions and symmetrization. Suppose, besides a measure x on RV,
we are given a partition 7. This defines a subspace in the space of all
functions ¢ on RV, say &, C ® which consists of the functions constant on
the subsets, called slices, into which RY is partitioned. One also may think
of @, as the space of functions on the quotient space W = RV /r and, in
fact, the partitions in our discussion are usually associated to semi-algebraic
maps p : RY — X which partition RV into the pull-backs p~1(x), = € X.
The norms || ¢ ||, and || grady ||, , when restricted to ®, , define the
spectrum of p relative to m by an obvious generalization of the previous
discussion. This can also be done in terms of p : R¥Y — X by using the
pushforward measure p,(u) on X along with a certain pushforward of the
Riemannian metric.

Examples. — (a) Let p : RY — RN~k is an orthogonal projection.
Then, obviously, the spectrum of an arbitrary u relative to m (corresponding
to p) equals the spectrum of p.(x) on RN ~*. (Here one should not bother
pushing forward the metric because p is a Riemannian submersion.)

Notice that the eigenvalues \; of x and X; of p,(u) are related
by the obvious inequality A\; < ;. This allows one to obtain nontrivial
lower bounds on the spectra of certain (singular) measures in RN=* by
representing them as pushforwards of some standard measures RN. One
obtains an interesting example of that kind by taking a round sphere S™
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in RV with the standard (isometry invariant) measure and projecting it
down to RV—k. In fact, already the projection S™ — R gives rise to a
meaningful inequality on )A; for the pushforward measure.

(b) Let RY be acted upon by a group G and = is the partition into
the orbits. Then ®, consists of G-invariant functions. Furthermore, if G
is compact and the action is isometric and p-preserving, then there is a
natural projection ® — @, corresponding to averaging over G. This is
a typical instance of symmetrization that is an operation on functions ¢
on RN making them constant on the slices of a given partition. A similar
symmetrization for a general measurable partition m consists in integrating
 over the slices of 7 relative to the natural measure induced by x on almost
all slices.

One can often use such symmetrization to estimate the spectrum of
a measure in terms of the spectrum relative to = and the spectra of the
slices (see §6). The simplest instance of that is the relation

Spec(p’ x p") = Spec u’ + Spec p”

where u’ x p is the product measure on RV’ x R¥” and the sum on the
right hand side stands for the sum of the subsets {A;} and {\}'}, i.e.

{Xi+7}

i,j=0,1,...

Remark. — The above discussion indicates that one should enlarge
the class of “algebraically defined” measures p by allowing the push-
forwards of p under semi-algebraic maps but we do not attempt to be
systematic in this matter.

2. Lower bounds on ;.

In this section I state and explain without giving the detailed proof
the main property of the spectrum we have proved so far with Cheeger.

2.A. Uniform discreteness. Let V be a semi-algebraic subset in RN defined
by the relations

V = {v e RN|p;(v) =0, gx(v) >0},
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where p; , j=1...rand gx, k= 1...s are polynomials on RN . We
denote by deg V' the sum of the degrees of the polynomials p; and gi.

2.A;. THEOREM (*). — The number Xy of the eigenvalues \; of V (i.e.
of the measure py ) contained in a given interval [0, \] satisfies

(+) Ty < C(Diam V)A% + gy

where Diam V' denotes the Euclidean diameter of V, m = dimV, and C
and o are some universal constants depending only on m and degV'.

2.A;. Remarks. — (a) Let V be a smooth subvariety in RV . Then the
estimate (+) is standard if one allows C and ¢ to depend on V. In our
case we may take an algebraic family V; of smooth algebraic subvarieties
converging to a singular one V; — Vj for t — s, but yet (4+) remains valid
with C and o¢ independent of t.

(b) The dependence of oo on deg V' and dim V' is essentially the same
as that for the Betti numbers in the estimates by Milnor and Thom (see
[Mil], [Tho]). In fact, the number ¥, for ¢ — 0 can be thought of as a kind
of zero Betti number.

2.B;. Idea of the proof of 2.A;. — The estimate (+) for smooth manifolds
V trivially follows from the fact that for every 6 > 0 V can be divided into
k “standard” pieces Vj, j =1,...,k, of diameter é for k about Vol V/6™ ,
m =dimV . In fact if a function 9 on V is "orthogonal” to V; , i.e.

/ p=0,j=1,...,k,
V.

then the Lz-norm of 9 on V satisfies

k k
2 - 2
loll, [ @ 2 Y lell, < AT} lerad ol
i=1 j=1

where A1 ; denotes the first eigenvalue of V;. (Compare 1. ). Now, since each
V; is “standard”, its first eigenvalue is about §~2 and so ||¢||,, is bounded
by a constant §2. Furthermore, if Vol V is bounded by a constant times

(*) It would be prudent at this stage to claim the proof of the theorem only for dimV = 2.
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(Diam V)™ (which is, in fact, the case for semialgebraic V'), and if we take
6 ~ (Vol V/k)# , then we obtain the bound

lelly < (Diam V)*k~=,
which tells us (see §1) that the k-th eigenvalue of V satisfies
A > (Diam V)~2 k=,
This implies (+) with constants depending on V' in question.

Now, in the semialgebraic case we use the standard triangulation
of V into simplices of size §. (See [ Gro3|, for instance.) These simplices
are not “standard”, (i.e. they are not mutually Lipschitz equivalent with
a fixed Lipschitz constant) but still these simplices (for an appropriate
triangulation) have rather simple shapes. For example, if dim = 2, they
can be made uniformly bilipschitz to the simplices A, bounded by graphs
of monotone algebraic functions like t* on the interval [0,6], see Fig. 3
below.

Fig. 3

Despite the presence of a “cusp” at zero, the simplices A, for
a > 1 have roughly the same spectral behaviour as the linear simplicies
(corresponding to a = 1). For example, one can bound the first eigenvalue
of A, from below by Cheeger’s inequality (see 1.A3). In fact, since the
function ¢ is monotone, the isometric profile Is(a) of A, satisfies

Is(a) < 106c

1
for a < 3 areaA,, as an elementary argument shows.

Another way to see that the presence of a cusp for a > 1 does not
make A\; — 0 is to show first that this A; can be bounded in terms of the
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eigenvalue \; of the projection of A to the t-axes. The projection of this
A, or rather of the corresponding (Lebesgue) measure pa,, is the measure
on the segment [0, 8] with the density ¢®. Essentially the same measure t%dt
on [0,8] can be obtained by projecting to [0, §] the rotational body B,, in
R™ obtained by rotating A for b = a/m — 1 around the t-axis. This B,
for m > a + 1 is convex and thus its spectrum is well under control. Then
one can control the spectrum of the projection measure on [0, ] as well.

Remarks. — The above lift to R™ agrees with the following (easy to
prove) property of Is(a) of A,,

Is(a) ~ a1

for small a , which is just how Is(a) behaves for convex subsets in R*! in
case that a is an integer. In fact, one can give a qualitative description of
the isoperimetric profiles Is(a) and Is(ay,. .., q;) for general semialgebraic
sets where one sees a similar phenomenon of the degree appearing together
with the dimension. One also observes this picture in the non-linear spectral
problems for the energies

E:pw lgradell, /llel,,  for 1<pg<oo

(We hope to return to this discussion at another opportunity.)

3. Algebraic approximation and localization of eigenfunctions;

computability of \;.

The gradient as well as the higher order derivatives of an eigenfunction
1; on a smooth variety V can be estimated by the Ls-norm of v; and the
corresponding \;, where the implied constant depends on the geometry of
V. This shows that 1; can be e-approximated by polynomials of degree d
for € = ¢(d) — 0 for d — oco. In particular, one can approximately evaluate
A; by restricting the energy ¢ — |lgrad¢| / |l¢|| to the (projectivized)
space of polynomials ¢ of degree d, where the error of the approximation
is well under control in terms of d and the geometry of V.

Now let us see what happens for singular varieties and also for families
of nonsingular ones as they approach a singularity

3.A. Example. — Consider the plane regions bounded by the graph of the
function z2 + ¢, for € > 0, over the segment [—1, 1], as sketched below :
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Fig. 4

It is more convenient to project this picture to the z-axes and pass to the
measure g = (2 + €)dt on [—1,1]. Then we see that the corresponding
A1 = A1(€) goes to zero as € — 0 and therefore the gradient of 1, goes to
infinity. In fact, let us evaluate the enérgy

Edy) = llgradgll,, / liel,,

at the following function

e 2r for |z| < e
Pe(z) = 1 for z>./e
-1 for z<.[fe

Here obviously
lgell,,, ~#2/3 for €—0

and
"gr&d ‘Pe",‘, ~ \/E’

1
/ . Pedpe = 0,

and so \;(€) goes to zero at least as fast as e.

while

Notice that in this example the convergence A;(¢) — 0 for ¢ — 0
is established with a semialgebraic test function, namely ¢.(z), where a
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function is called semialgebraic if its graph is a semialgebraic subset. Also
notice, that the same “semialgebraic test” shows that A;(0) = 0. Now, let
4 = pdz be an arbitrary measure on the unit interval [0, 1] with the density
function p(x) > 0. The vanishing of \; is certainly due to the vanishing of
p(z) at some points z. In fact, a simple argument shows that

1
A1 (p) =0®/ p~t=o00.
0

If p is a semialgebraic function the condition fol p~1 = 0o can be obviously
expressed in infinitesimal terms at the zero points of p(z). Thus the
condition A;(u) = 0 is semialgebraic, i.e. the set of u satisfying this
condition constitute a semialgebraic subset in the set T of all u with
semialgebraic density functions. (The set of the semialgebraic functions
of a fixed degree d constitutes a semialgebraic set and so one may speak of
semialgebraic subsets.)

This suggests that in all dimensions the eigenvalues A1 (V;) and A; (1)
look in a first approximation as semialgebraic (or rather semianalytic
if not Pfaff) functions in the parameter ¢ € T. Furthermore, a similar
property can be conjectured for the eigenfunctions ;:(v). Let us make
these conjectures precise.

3.B. The equations \;(V)) =0 and A\;(u) = 0 define semialgebraic subsets
in the space of all V'’s and u’s respectively.

In fact, this looks quite easy at least for measures x4 in domains Q2
in RN with, say, polynomial densities p. The condition on p equivalent to

A1(p) = 0 seems to be
/p'l = 0o,
L

where L is a generic curve in .

In any case the problem can be localized to a certain singularity ¥ of
V (or p) and then one can probably express the vanishing A; = 0 in terms
of the infinitesimal geometry around ¥ .

3.C. The i-th eigenvalue \; of V' (or ) is defined (see §1) as the solution to
a certain variational problem on the space ® of all functions on V. Now, let
us take the subset ®; C P of the semialgebraic functions of degrees < d and
define )\;(d) as the solution to our variational problem restricted to 4. We
conjecture that the rate of convergence \;(d) — A; for d — oo depends only
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on deg(V'). This would insure a principal possibility to compute \; with a
given degree € of precision, with the length of the computation depending
only on ¢,i and deg ®.

A stronger conjecture states that the i-th eigenfunction ¥; on V' can be
e-approximated (in a variety of suitable norms) by semialgebraic functions
of degree d = d(e,i,deg V). Here one may also ask if 1; look similar to a
semialgebraic function of certain degree D = D(i,degV). In fact, this is
known to be true in certain cases thanks to Khovanskii’s theory of Pfaff
varieties (see [Kho]), and one may seek a generalization of this theory to
certain non-holonomic elliptic P.D.E.

3.C;. The above discussion (and the conjectures) apply to more general
(non-quadratic) functions defined in §1. For example, in the case of the
isoperimetric profile it appears geometrically obvious that one can see Is(a)
with a “semialgebraic eye” up to a given error. In particular if V' can be
divided into two pieces of equal mass by a small hypersurface H, then
this can also be obtained with a semialgebraic hypersurface H; of degree
d bounded in terms of deg V.

4. Spectra of semialgebraic families;

continuity and analyticity of \;(V;) and \;(u.).

We continue here the discussion on analytic properties of the depen-
dence of the spectrum on auxiliary (semi)algebraic parameters. If we look
at the simplest case where V; are smooth algebraic varieties smoothly alge-
braically depending on t, then \;(V}) are known to be analytic in ¢ in-so-far
as one properly takes into account the multiplicity (or, equivalently, the or-
dering) of \;. The same appears to be true (and, probably, is not hard to
prove) if V; is a smooth algebraic family of (possibly) singular varieties.
For instance, one may take a family of plane n-gones for a fixed n. Another
example is a family of hyperplane sections V; = H; NV for a fixed singular
V', which gives us a smooth family V; for generic t.

On the other hand, at the points ¢ where a family V; is non-smooth,
e.g. for the levels V; = p~1(t) at the critical values t..; of a polynomial p on
RY, the eigenvalues may be not analytic anymore, nor even continuous at
teri- In fact, even the (normalized) measure p; associated to ¢ may become
discontinuous.
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4.A. Example. — Consider the plane regions V; bounded by the graphs of
the functions ¢;22+t; over the segment [—1, +1] 5 z for positive t = (t;, t2).
If ¢t — 0, then the non-normalized measure y; associated to V; converges
to zero, which is not very interesting from the spectral view point. On
the other hand, if we normalize u; by dividing p; by the total mass of V;
(which, of course, has no effect on the spectrum) then we come to a more
meaningful picture. Namely, the limit measure on [—1, 1] (which is the limit
of V;) may be any (normalized) measure with a density function of the form

az’+=——a, a > 0. Furthermore, if we choose an arbitrary (semi)algebraic
curve t,(s), t2(s) in the parameter space T = {t; > 0, to > 0} with
t1(s), t2(s) — 0 for s — so, then the measures p,(,) will converge to some
measure 4 on [—1,1] (and the eigenvalues \; of V(¢(s)) converge as well).

4.B. In general, the analytic nature of the correspondence t — py, is,
in principle, understood. Namely, the total mass function t — u(V;) is
obtained by integrating the algebraic functions defining V;. (This is quite
clear if V; has full dimension N in the ambient space RN. If dimV =m <
N, one should use the Grassmann manifolds G of (N — m)-dimensional
affine subspaces in RV and pass from V to the integer valued function
on G which assigns to every subspace g C RY the geometric intersection
number § (¢NV).) Similarly, one may express the mass of V; N W for every
(semialgebraic) domains W C RY and the totality of these masses gives us
the full information on ¢ — puy,. The best understood case is that of the
mass of the level sets of a polynomial p on R", i.e. u(p~![t1,t2]), which is
traditionally studied by means of the so-called ¢-functions associated to p
and smooth functions ¢ with compact supports on RV,

¢(s) = L . p’pdu

(see [At], [Ber], [BerGel], [Bj]). Apparently with the present state of
knowledge one can satisfactorily address the following problems (a) and
(b) concerning the function
tpy,
which is essentially amounted to the study of the total mass
t— u(V)
on the parameter space T.

(a) The analytic continuation of the function py, to the complexified
space CT. Notice that the function u(V;) (and hence uy,) is real analytic

"
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for generic t and so the analytic continuation makes sense. Of course, the
continuation of u(V;) to the complex domain is a multivalued function
and one of the major problems is that of the monodromy around the
singularities. This is closely related to the second question :

(b) Asymptotic expansion of u(V;) at the singular points.

The existence of a nice asymptotic expansion in the case V; =
p~([t1,t2]), follows from the meromorphic continuation of the correspond-
ing (-function to the complex domain C 5 s. Probably, the general case
falls along the same lines and, in particular, the normalized measure
t — py,/u(V4) is continuous on algebraic curves. In other words if we take
an algebraic curve in T parametrized by s €]0, 1], such that py, is analytic
in s, then for every finite system of semialgebraic domains Wy,..., W, in
R” the map from ]0, 1] to the projective space P* defined by

s (M(V;)7 l"’(‘/s N Wl)’ coe 7/"'(‘/; N Wk))

continuously extends to s = 0. (Notice that such extension property
suggests looking at the closure T' of the graph of the map from T into
the space of probability measures,

t = pv, /u(Vi)

as a kind of resolution T’ — T').

4.C. Now we turn to more difficult questions concerning the dependence of
the eigenvalue \; on y;. Here one thing is obvious, that is the semicontinuity
of A; if

Ht — Ho

then
liminf A;(pe) > Ai(po)-

It is also clear, that \; are continuous if the degeneration of V; to Vj is
not too severe. For example, if an algebraic family V; is smooth at generic
points in Vj then \; are continuous. In other words the discontinuity of \;
is due to two phenomena

(1) Discontinuity of the dimension of V; (or some of the components
of V; ).

(2) Non-trivial multiplicity of the limit fiber Vj, i.e. where the “normal
projection” of nearby fibers V; to V} is not one-to-one at generic points.
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Notice, that in the semi-algebraic case the discontinuity may have
another reason. For example, take V; equal to the union of two unit
segments with distance ¢,

V;=[-1,0)U[t,t+1], t<O.

Notice that whenever we have the continuity of the spectrum of V;
over a compact semialgebraic base T with irreducible fibers V; , then we
have (by 2.A;) a uniform lower bound on ),

/\1(Vt) >e>0
over T, as was claimed in §0.

Even in those cases where A; are discontinuous one expects continuity
along algebraic curves t(s) as in the case of p;. In fact, this appears
geometrically obvious. On the other hand, the analytic continuation of
A1(V;) to complex t and the behavior near singular points probably needs
a deeper analytic study. The problem here appears somewhat similar to the
analytic continuation of eigenfunctions ; from V to CV, which does not
seem easy even if V is a nonsingular algebraic variety. (All these problems
are significantly simpler for dimV = 1 where we deal with O.D.E. rather
than P.D.E..)

5. Basic geometric means for estimating \; :
product inequalities, decomposition relations and measures

in the spaces of curves; monotonicity and quasiconvexity.

The standard (semi)algebraic tools for the study of a (semi)algebraic
variety V are as follows :

(i) Fibrations. V may be mapped onto (fibered over) another variety
X of lower dimension, p: V — X, and then one looks at V' as a collection
of fibers W, = p~!(z) parametrized by z € X. (Sometimes one uses only
partially defined fibrations, as in the case of pencils of hyperplane sections.)
An obviously utility of fibrations is a possibility to apply induction on
dimension, as dim V' > max(dim W, dim X).

(ii) Submanifolds. Submanifolds of positive codimensions, in particular
algebraic curves in V carry a non-trivial information about V.
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(iii) In the semi-algebraic world one is allowed to cut varieties into pieces.
For example, one may triangulate V' with geometrically controlled simplices
and also one may cover V by subsets with a certain bound on geometry
(see the discussion in [Gro]s around Yomdin’s lemma).

(iv) If V is singular, one customarily stratifies V' and thus divides the
study into separate treatments of the singular and nonsingular parts. Near
the singularity one may think of V as a cone over something of lower
dimension. Also one may blow up the singularity by the Hironaka theorem
which reveals much hidden geometry.

Now let us look at available geometric methods for the study of A; in
the frameworks (i) - (iv). We are concerned here first of all with the lower
bounds on \; and especially on ;.

5.A. The simplest case here is where V' is the metric product, V =W x X.
Then, as we have already mentioned in §1 the spectrum of V is the sum
of those of W and X, because the heat kernel is multiplicative under
metric Cartesian products. Furthermore, if p : V — X is a Riemannian
fibration with fiber W (i.e. for every geodesic segment o C X the pullback
p~1(0) is isometric to W x o), then the trace of the heat kernel on V is
bounded by that on the product X x W. This immediately follows from the
Kac-Feynman formula (and was explained to me many years ago by J.
Frohlich). Since the trace of the heat kernel is related to the eigenvalues by

(o]
traceexp —TA = Z e™ , T>0

i=0
any upper bound on this trace gives a lower bound on \;. Thus one can
bound A;(V') from below in terms of A;(B). Notice that such an estimate can
also be obtained by more geometric means, namely, by a symmetrization
argument which also applies to non-linear spectra and the isoperimetric
constants.

5.A;. Example. — Consider a domain Q in V and let us bound Vol,,
(for m = dimV = dimQQ) in term of Vol,,—; I by “symmetrizing” the
slices Q, = QN W, for W, = p~(z), ¢ € X as follows. We assume we
know the isoperimetric profile of the fiber and so we have the inequality

(*) Volg_; 09, > I(Volx ;) ,

for k = dim W and a certain function I(a) = Iw(a). Next we look at the
following three functions on X :
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(1) ¢(x) = Vol Q. Notice that since p is a Riemannian fibration
() equals the density of the push-forward of the measure of Q to X.

(2) ¥(z) = Voli_, 69,

(3) ¥(z) = the density of the push-forward of the measure on 6 to
X. That is [, ¥ = Volm—1(p™1(Y) N 8Q) for all domains Y C X.

The three functions ¢, and 7 are related by the following (easy)
inequality )
¥ > ¢%+|lgrad || . (+%)

Then we combine (*) and (**) and conclude to the following

Symmetrization inequality.

—2
¥ > (I(9))® + |lgrad ¢|* . (+)
This implies that

Vol 89 = /X Pz > /X VI(@)2 + lgrad o dz .

In order to use that for a lower bound on Vol Q2 in terms of Vol Q = [y pdx
we need a lower bound on the integral of the above /-€xpression in term of
J . Such a bound should be thought of as a Sobolev kind inequality and
it can be reduced to the isoperimetric inequality in X (as was observed by
Mazia about 30 years ago).

5.A,. Remarks. — (a) The above symmetrization method may look rather
crude but, in fact, it is sharp in many cases. For example if V is the
Riemannian fibration with the base X = RV and also with the Euclidean
fiber, W = R*, then the domains Q in V satisfy the (n + k)-dimensional
Euclidean inequality. In other words, the isoperimetric profile of V satisfies

Isy () > Isgn+x(a) .

In the general case one can evaluate Isy in terms of Isx and Isy but there
is no simple explicit formula even for Isx (a) = a1a® and Isy (a) = asab?,
with general a; and b;.

(b) If V — X is a non-Riemannian fibration then one should introduce
certain correction terms into the above formulae, and then again one can
relate the spectral (and isoperimetric) invariants of V' to those of W
and X. Notice that the relevant correction terms fall, roughly speaking,
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into two categories. The more important terms measure the deviation
of p: V — X from a Riemannian submersion, where the situation
becomes especially unpleasant whenever the differential of p on a horizontal
tangent space (i.e. normal to the fibers) strongly deviate from an isometry,
e.g. if this differential vanishes. The second group of correction terms
concerns the deviation of the (horizontal) holonomies (mapping fibers to
fibers along paths in X) from isometries. These terms may sometimes be
fully incorporated into symmetrization inequalities, as it happens for the
distance functions (and horofunctions) p : V. — X = R on the spaces of
constant curvature (and up to some extend on general symmetric spaces of
rank one). In fact these corrections may even improve our inequalities.

5.B. Instead of using the fibers W, in V one may look at more general
subvarieties, such as the family of all straight segments in a domain
V C RV, or the family of all (semi)algebraic curves of a fixed degree
d in V. In fact, many classical “isoperimetric” arguments giving a lower
bound to A; (and similar invariants) proceed as follows. First, the function
¢ in question is restricted to a curve £ in V from some family L. Then
one proves a relevant inequality for ¢|¢, which is then transported to V
by some integration over L. An especially convenient method of this kind
(applicable to our semialgebraic discussion) is axiomatized on p. 166 in

[Gro2].

Notice in this respect that in the (conformal) geometry one measures
the sizes of families of curves (and higher dimensional submanifolds) by
certain invariants called moduli (which are the duals of the capacity
invariants). These invariants, when applied to the family of all curves
(possibly, with certain mild restrictions) lead to characteristics of V' similar
to A;. The above discussion says, in effect, that one achieves a reasonably
good approximation to these invariants if one uses the family of curves of
degree d for d depending only on deg V. This indicates a linkage of the
present discussion with that in §3 concerning algebraic approximation of
Ai and ’(ﬂ,

5.C. We have already seen in §2 that a division (e.g. triangulation) of V'
into “sufficiently simple” pieces (simplices) leads to a lower bound on ;.
This approach gives rise to the following two complementary questions.

(1) What are the simplest possible pieces into which one can decom-
pose a semialgebraic set. This is related to Yomdin’s lemma as we have
mentioned earlier.
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(2) What are natural classes of “simple” spaces where one exercises
good control over the spectrum? For example, all convex domains are quite
good in this respect and a “little non-convexity” (properly understood) does
not bring any problems. Intuitively, if a “reasonable” space has small \;
this should be seen by a naked eye : there must be an obvious narrow spot
somewhere in V. This principle suggests a variety of geometric criteria for
A1 > € > 0 which, in particular, apply to domains bounded by the graph of
monotone funcitons (with an appropriate definition in the many variable
case).

In order to use (1) and (2) together one needs a notion of simplicity
which is general enough to be satisfied by the simplices of suitable semial-
gebraic triangulations, and yet sufficiently powerful to keep \; away from
zero. Such a notion indeed exists (the definition I have in mind is too tech-
nical to be explained in this lecture) and leads to our lower bound on \; (see
2A,). However, this does not close the discussion as one needs more refined
(and more general) notions of simplicity for other geometric problems.

5.D. Whenever one has a parametrix for A one obtains a control over
the spectrum. A parametrix can often be produced by a local construction
and then the local geometry of V is translated into an information on the
spectrum. In particular, infinitesimal data of some stratification of V may
be used via a parametrix to bound the spectrum from below.

A closely related approach consists in using some smoothing operators
which commute (as the heat flow does) or almost commute (as the residual
part of a parametrix) with A. Once we have such an operator then again
we can bound )\; from below.

6. The spectrum of the Laplace operator on forms.

The problems which arise here-are quite similar but more difficult
than those for the ordinary Laplace operator A on functions. For example,
even a lower bound on ); for piecewise flat spaces V' in terms of the number
of simplices (i.e. degree) requires a certain thought above dimension zero.
(This also leads to a more invariant and interesting questions of estimating
A; for the above V' in purely geometric terms independent of a given
triangulation).
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The difficulty which appears for higher degree forms when one tries
to bound \; from below is similar to the corresponding problems in the
Riemannian geometry. One can easily bound A; on functions in terms of
the lower bound on the sectional (even Ricci) curvature (see [Grol) but
this does not work (so far) for higher degree forms appart from \; = 0
which corresponds to bounding Betti numbers (see [Gro4]). In both cases
(real algebraic and K < const) one needs a geometrically uniform local
contractibility of the space V' in question. It seems that this can be produced
for semialgebraic sets on the basis of available information but we (J.C. and
M.G.) have not checked the proof in detail yet.

7. Low and high frequences.

Our speculations on the spectrum presented in the earlier sections
were centered on the lower bounds for A\; which is an essentially non-local
geometric problem. One enters a different domain when one turns to the
asymptotic study of A; for ¢ — oo. The basic means here are the asymptotics
of the heat operator exp —7A for 7 — 0 and that of the wave operator

cosTA. Here are obvious questions which come to one’s mind.
o]

Does the ¢(-function Z/\f admit a meromorphic continuation for

singular semialgebraic varieztigs V' 7 How the singularities of V are reflected
in the poles of {y(s)? What is the dependence of {y,(s) ont € T as V;
algebraically varies over a parameter space T'? (See [Che2] and [Che3] for
a study of spaces with special singularities.)

8. Spectra of non-algebraic sets from the semialgebraic viewpoint.

The geometry of semialgebraic sets was used by I. Yomdin in his
study of smooth maps. For example, Yomdin gives in [Yom] a bound on
the average Betti number of a fiber of a smooth map f. Namely, he takes
f:V — X and evaluates the integral

*) | (@) e,

where X is the non-critical set for f, in terms of p and the C*-norm of
f. Since the number N, of eigenvalues below a given ¢ > 0 can be thought
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of as a geometric (or qualitative) counterpart of the Betti number (of the
corresponding dimension) one expects an interesting bound similar to ()
with N, = N¢(¢) (where ¢ refers to the Laplace operator on i-forms) instead
of bi.

9. Geometric uses of the spectrum.

Why one wants to know such an invariant of V' as Spec(V) which
appears so farfetched and unnatural to a geometric eye? The first reason
(apart from purely sociological ones) is the desire to use Spec as a test
for our understanding of the overall geometry of V. A more serious reason
originates from a hope that the study of the spectrum may eventually reveal
a non-trivial geometrical (e.g. topological) information about V. This hope
is well justified in those cases where apart from geometric estimates on A;
one has in his possession an independent (analytical) source of knowledge
about Spec. For example, if V is a locally homogeneous space, one can say
something about the spectrum using the representation theory and related
means. Also, if V' has special holonomy (e.g. V' is Kéhler) then again there
is a geometrically non-trivial input from the analysis. Finally, the index
theorem and related results provide a valuable source of information which
can not be recaptured by a pure geometry. However, for general Riemannian
manifolds V the study of the spectrum appears a one way route : the
geometry is used to study Spec but there is no feedback from analysis to
geometry. Thus one wants to find classes of manifolds V' where an interplay
between geometry and analysis becomes real. One may hope this happens
for (real) algebraic varieties V', or at least for the most distinguished among
them, for example, for certain moduli spaces. Yet the ideas presented in
this lecture fall short of the realization of this hope so far.
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