Spectral geometry of semi-algebraic sets
Annales de l'Institut Fourier, Volume 42 (1992) no. 1-2, pp. 249-274.

The spectrum of the Laplace operator on algebraic and semialgebraic subsets A in R N is studied and the number of small eigenvalues is estimated by the degree of A.

Nous étudions le spectre de l’opérateur de Laplace sur les ensembles algébriques et semi-algébriques dans R N .

@article{AIF_1992__42_1-2_249_0,
     author = {Gromov, Mikhael},
     title = {Spectral geometry of semi-algebraic sets},
     journal = {Annales de l'Institut Fourier},
     pages = {249--274},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {42},
     number = {1-2},
     year = {1992},
     doi = {10.5802/aif.1291},
     zbl = {0759.58048},
     mrnumber = {93i:58157},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1291/}
}
TY  - JOUR
AU  - Gromov, Mikhael
TI  - Spectral geometry of semi-algebraic sets
JO  - Annales de l'Institut Fourier
PY  - 1992
DA  - 1992///
SP  - 249
EP  - 274
VL  - 42
IS  - 1-2
PB  - Institut Fourier
PP  - Grenoble
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.1291/
UR  - https://zbmath.org/?q=an%3A0759.58048
UR  - https://www.ams.org/mathscinet-getitem?mr=93i:58157
UR  - https://doi.org/10.5802/aif.1291
DO  - 10.5802/aif.1291
LA  - en
ID  - AIF_1992__42_1-2_249_0
ER  - 
%0 Journal Article
%A Gromov, Mikhael
%T Spectral geometry of semi-algebraic sets
%J Annales de l'Institut Fourier
%D 1992
%P 249-274
%V 42
%N 1-2
%I Institut Fourier
%C Grenoble
%U https://doi.org/10.5802/aif.1291
%R 10.5802/aif.1291
%G en
%F AIF_1992__42_1-2_249_0
Gromov, Mikhael. Spectral geometry of semi-algebraic sets. Annales de l'Institut Fourier, Volume 42 (1992) no. 1-2, pp. 249-274. doi : 10.5802/aif.1291. https://aif.centre-mersenne.org/articles/10.5802/aif.1291/

[At] M. Atiyah, Resolution of singularities and division of distributions, Comm. Pure Appl. Math., 23 (1970), 145-150. | MR | Zbl

[Ber] I. Bernstein, Moduli over the ring of differential operators, Funct. Anal. and App.

[BerGel] I. Bernstein, S. Gelfand, Meromorphicity of the function pλ, Funct. Anal and Applic., (Russian), 3-1 (1969), 84-85.

[Bj] J. Björk, Rings of differential operators, North-Holland Publ. Co. Math. Libr., 21 (1979). | MR | Zbl

[Che1] J. Cheeger, A lower bound for the smallest eigenvalue of the Laplacian, Problem in Analysis, A symposium in honor of Bochner (1970), Princeton, pp 195-199. | MR | Zbl

[Che2] J. Cheeger, On the Hodge theory of Riemannian pseudomanifolds, Proc. Symp. Pure Math., AMS Providence R.I., XXXVI (1980), 91-146. | MR | Zbl

[Che3] J. Cheeger, Spectral geometry of singular Riemannian spaces, J. Diff. Geom., 18-4 (1983), 575-657. | MR | Zbl

[Gro1] M. Gromov, Paul Levy's isoperimetric inequality (1980) Preprint, IHES.

[Gro2] M. Gromov, Dimension, non-linear spectra and width, Springer Lecture Notes, 1317 (1988), 132-185. | MR | Zbl

[Gro3] M. Gromov, Entropy, homology and semialgebraic geometry (after Yomdin), Astérisque, Soc. Math. France, 145-146 (1987), 225-241. | Numdam | MR | Zbl

[Gro4] M. Gromov, Curvature, diameter and Betti numbers, Comm. Math. Helv., 56 (1981), 179-195. | MR | Zbl

[Kho] A.G. Khovanskii, Fewnomials, Translation of Math. Monographs, V. 88, AMS, 1991. | Zbl

[Mil] J. Milnor, On the Betti numbers of real varieties, Proc. Am. Math. Soc., 15 (1964), 275-280. | MR | Zbl

[Tho] R. Thom, Sur l'homologie des variétés algébriques réelles. In Differential and Combinatorial Topology. A symposium in honor of M. Morse, Princeton University Press, 1965, pp. 252-265. | Zbl

[Yom] Y. Yomdin, Global bounds for the Betti numbers of regular fibers of differential mappings, Topology, 24-2 (1985), 145-152. | MR | Zbl

Cited by Sources: