In this article we prove that the fibration of by potentials which are isospectral for the 1-dimensional periodic Schrödinger equation, is trivial. This result can be applied, in particular, to -gap solutions of the Korteweg-de Vries equation (KdV) on the circle: one shows that KdV, a completely integrable Hamiltonian system, has global action-angle variables.
Dans cet article on démontre que la fibration de par des potentiels isospectraux pour l’équation de Schrödinger périodique à une dimension est triviale. Ce résultat peut être appliqué aux solutions de lacunes de l’équation de Korteweg-de Vries (KDV) sur le cercle : on en déduit que KdV — un système hamiltonien complètement intégrable — a des variables action-angle globales.
@article{AIF_1991__41_3_539_0, author = {Kappeler, Thomas}, title = {Fibration of the phase space for the {Korteweg-de} {Vries} equation}, journal = {Annales de l'Institut Fourier}, pages = {539--575}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {41}, number = {3}, year = {1991}, doi = {10.5802/aif.1265}, zbl = {0731.58033}, mrnumber = {92k:58212}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1265/} }
TY - JOUR AU - Kappeler, Thomas TI - Fibration of the phase space for the Korteweg-de Vries equation JO - Annales de l'Institut Fourier PY - 1991 SP - 539 EP - 575 VL - 41 IS - 3 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1265/ DO - 10.5802/aif.1265 LA - en ID - AIF_1991__41_3_539_0 ER -
%0 Journal Article %A Kappeler, Thomas %T Fibration of the phase space for the Korteweg-de Vries equation %J Annales de l'Institut Fourier %D 1991 %P 539-575 %V 41 %N 3 %I Institut Fourier %C Grenoble %U https://aif.centre-mersenne.org/articles/10.5802/aif.1265/ %R 10.5802/aif.1265 %G en %F AIF_1991__41_3_539_0
Kappeler, Thomas. Fibration of the phase space for the Korteweg-de Vries equation. Annales de l'Institut Fourier, Volume 41 (1991) no. 3, pp. 539-575. doi : 10.5802/aif.1265. https://aif.centre-mersenne.org/articles/10.5802/aif.1265/
[CL] Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955. | MR | Zbl
, ,[DU] On global action-angle coordinates, C.P.A.M., 33 (1980), 687-706. | MR | Zbl
,[FIT] An explicit solution of the inverse problem for Hill's equation, SIAM J. Math. Anal., 18 (1987), 46-53. | MR | Zbl
, , ,[GT1] Gaps and bands of one dimensional periodic Schrödinger operators, Comm. Math. Helv., 59 (1984), 258-312. | MR | Zbl
, ,[GT2] Gaps and bands of one dimensional periodic Schrödinger operators II, Comm. Math. Helv., 62 (1987), 18-37. | MR | Zbl
, ,[GK] Introduction to the Theory of Linear Non Selfadjoint Operators, Transl. of Math Monogr., vol. 18, AMS, Providence, 1969. | MR | Zbl
, ,[Ka] Perturbation Theory for Linear Operators, 2nd ed., Springer-Verlag, 1976. | MR | Zbl
,[Kp] On the periodic spectrum of the 1-dimensional Schrödinger operator, Comm. Math. Helv., 65 (1990), 1-3. | MR | Zbl
,[Ma] Sturm Liouville Operators and Applications, Birkäuser, Basel, 1986. | Zbl
,[MM] The spectrum of Hill's equation, Inv. Math., 30 (1975), 217-274. | MR | Zbl
, ,[MW] Hill's Equation, Wiley-Interscience, New York, 1986.
, ,[MT] Hill's operator and hyperelliptic function theory in the presence of infinitely many branch points, CPAM, 24 (1976), 143-226. | MR | Zbl
, ,[PS] Aufgaben und Lehrsätze aus der Analysis, vol. 2, 3rd ed., Grundlehren, Bd 20, Springer-Verlag, New York, 1964. | Zbl
, ,[PT] Inverse Spectral Theory, Academic Press, 1987. | Zbl
, ,Cited by Sources: