In this paper, we prove by using the minimax principle that there exist infinitely many -equivariant harmonic maps from a specific Lorentz manifold to a compact Riemannian manifold.
Nous démontrons à l’aide du principe du minimax qu’il existe une infinité d’applications harmoniques, -équivariantes, définies sur une variété lorentzienne donnée et à valeurs dans une riemannienne compacte.
@article{AIF_1991__41_2_511_0, author = {Ma Li}, title = {On equivariant harmonic maps defined on a {Lorentz} manifold}, journal = {Annales de l'Institut Fourier}, pages = {511--518}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {41}, number = {2}, year = {1991}, doi = {10.5802/aif.1263}, zbl = {0754.53046}, mrnumber = {92m:58026}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1263/} }
TY - JOUR AU - Ma Li TI - On equivariant harmonic maps defined on a Lorentz manifold JO - Annales de l'Institut Fourier PY - 1991 SP - 511 EP - 518 VL - 41 IS - 2 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1263/ DO - 10.5802/aif.1263 LA - en ID - AIF_1991__41_2_511_0 ER -
Ma Li. On equivariant harmonic maps defined on a Lorentz manifold. Annales de l'Institut Fourier, Volume 41 (1991) no. 2, pp. 511-518. doi : 10.5802/aif.1263. https://aif.centre-mersenne.org/articles/10.5802/aif.1263/
[E] Proc 1981 Shanghai-Hefei Symps. Diff. Geom. Diff. Eq., Sci. Press, Beijing, (1984), 55-73.
,[EL] Another Report on Harmonic Maps, Bull. London Math. Soc., 20 (1988), 385-524. | MR | Zbl
and ,[G] On the Two-dimensional Minkowski space, Comm. Pure and Appl. Math., 33 (1980), 727-738. | Zbl
,[M] Morse Theory, Princeton, 1963. | Zbl
,[P1] Lusternik-Schnirelmann theory on Banach Manifold, Topology, 5 (1966), 115-132. | MR | Zbl
,[P2] The Principle of Symmetric Criticality, Comm. Math. Phys., 69 (1979), 19-30. | MR | Zbl
,[V-PS] The Homology Theory of the Closed Geodesic Problem, J. Diff. Geom., 11 (1976), 633-644. | MR | Zbl
, ,Cited by Sources: