Maximum modulus sets and reflection sets
Annales de l'Institut Fourier, Volume 41 (1991) no. 2, pp. 431-466.

We study sets in the boundary of a domain in C n , on which a holomorphic function has maximum modulus. In particular we show that in a real analytic strictly pseudoconvex boundary, maximum modulus sets of maximum dimension are real analytic. Maximum modulus sets are related to reflection sets, which are sets along which appropriate collections of holomorphic and antiholomorphic functions agree.

Nous étudions les ensembles dans la frontière d’un domaine de C n , sur lesquels une fonction holomorphe est de module maximum constant. En particulier, nous montrons que dans une frontière réelle analytique strictement pseudoconvexe, les sous-variétés de dimension maximum permise, qui sont ensembles de module maximum, sont réelles analytiques. Les ensembles de réflexion sont les ensembles le long desquels des collections appropriées de fonctions holomorphes et antiholomorphes coïncident, ils interviennent dans l’étude des ensembles de module maximum.

@article{AIF_1991__41_2_431_0,
     author = {Nagel, Alexander and Rosay, Jean-Pierre},
     title = {Maximum modulus sets and reflection sets},
     journal = {Annales de l'Institut Fourier},
     pages = {431--466},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {41},
     number = {2},
     year = {1991},
     doi = {10.5802/aif.1260},
     zbl = {0725.32007},
     mrnumber = {92j:32049},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1260/}
}
TY  - JOUR
AU  - Nagel, Alexander
AU  - Rosay, Jean-Pierre
TI  - Maximum modulus sets and reflection sets
JO  - Annales de l'Institut Fourier
PY  - 1991
SP  - 431
EP  - 466
VL  - 41
IS  - 2
PB  - Institut Fourier
PP  - Grenoble
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.1260/
DO  - 10.5802/aif.1260
LA  - en
ID  - AIF_1991__41_2_431_0
ER  - 
%0 Journal Article
%A Nagel, Alexander
%A Rosay, Jean-Pierre
%T Maximum modulus sets and reflection sets
%J Annales de l'Institut Fourier
%D 1991
%P 431-466
%V 41
%N 2
%I Institut Fourier
%C Grenoble
%U https://aif.centre-mersenne.org/articles/10.5802/aif.1260/
%R 10.5802/aif.1260
%G en
%F AIF_1991__41_2_431_0
Nagel, Alexander; Rosay, Jean-Pierre. Maximum modulus sets and reflection sets. Annales de l'Institut Fourier, Volume 41 (1991) no. 2, pp. 431-466. doi : 10.5802/aif.1260. https://aif.centre-mersenne.org/articles/10.5802/aif.1260/

[1] R. Arapetjan, G. Henkin, Analytic continuation of CR functions through the "edge of the wedge", Soviet Math. Dokl., 24 (1981), 128-132. | Zbl

[2] M. S. Baouendi, C. H. Chang, F. Treves, Microlocal hypoanalyticity and extension of CR functions, J. Diff. Geom., 18 (1983), 331-391. | MR | Zbl

[3] D. Barrett, Global convexity properties of some families of three dimensional compact Levi-flat hypersurfaces, preprint. | Zbl

[4] E. Bedford, P. De Bartoleomeis, Levi flat hypersurfaces which are not holomorphically flat, Proc. A.M.S., (1981), 575-578. | MR | Zbl

[5] B. Berndtsson, J. Bruna, Traces of pluriharmonic functions on curves, to appear in Arkiv För Mat. | Zbl

[6] J. Bruna, J. Ortega, Interpolation by holomorphic functions smooth up to the boundary in the unit ball in Cn, Math. Ann., 274 (1986), 527-575. | MR | Zbl

[7] J. Chaumat, A. M. Chollet, Ensemble pics pour A∞(D), Ann. Inst. Fourier, 29-3 (1979), 171-200. | Numdam | MR | Zbl

[8] B. Coupet, Régularité de fonctions holomorphes sur des wedges, Can. Math. J., XL (1988), 532-545. | MR | Zbl

[9] B. Coupet, Constructions de disques analytiques et régularité de fonctions holomorphes au bord, preprint.

[10] T. Duchamp, E. L. Stout, Maximum modulus sets, Ann. Inst. Fourier, 31-3 (1981), 37-69. | Numdam | MR | Zbl

[11] M. Hakim, N. Sibony, Ensemble pics dans des domaines strictement pseudoconvexes, Duke Math. J., 45 (1978), 601-617. | MR | Zbl

[12] A. Iordan, Maximum modulus sets in pseudo convex boundaries, preprint. | Zbl

[13] A. Iordan, A characterization of totally real generic submanifolds of strictly pseudo convex boundaries in Cn admitting a local foliation by interpolation submanifolds, preprint. | Zbl

[14] S. Pinčuk, A boundary uniqueness theorem for holomorphic functions of several complex variables, Math. Notes, 15 (1974), 116-120. | MR | Zbl

[15] S. Pinčuk, S. Khasanov, Asymptotically holomorphic functions and applications, Mat. Sb., 134 (1987), 546-555. | Zbl

[16] J.-P. Rosay, A propos de wedges et d'edges et de prolongements holomorphes, TAMS, 297 (1986), 63-72. | MR | Zbl

[17] J.-P. Rosay, E. L. Stout, On pluriharmonic interpolation, Math. Scand., 63 (1988), 168-281. | MR | Zbl

[18] W. Rudin, Function theory in the unit ball of Cn, Grund. Math. Wis., 241, Springer-Verlag, 1980. | MR | Zbl

[19] N. Sibony, Valeurs au bord holomorphes et ensembles polynomialement convexes, Séminaire P. Lelong, 1975-1976, Springer L. N. in Math., 578 (1977). | Zbl

[20] S. Webster, On the reflection principle in several complex variables, Proc. A.M.S., 71 (1978), 26-28. | MR | Zbl

Cited by Sources: