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INTRODUCTION

The study of « maximum modulus sets » (i.e. subsets of the boundary
of a domain, in C", on which a holomorphic function takes its
maximum modulus) was initiated by Duchamp and Stout [9], to whom
most known results are due. Their work dealt mainly with manifolds.
Some preliminary work on general maximum modulus sets had been
done by Sibony [17], and some subsequent work on manifolds has been
done by A. Iordan [12], [13].

Duchamp and Stout mainly studied the case of real analytic maximum
modulus manifolds. It is precisely our goal to show how big the gap
is between the smooth (i.e. ¥? or ¥€®) case, and the real analytic case.
One of our results is the following : Let .# be a smooth manifold of
real dimension n in the boundary of a strictly pseudoconvex domain Q
in C*. If the boundary of Q is real analytic and if .# is a maximum
modulus set then .# is real analytic (see Corollary 1 and Proposition 6
for precise statements). We wish to emphasize how this result contrasts
with the theory of peak sets. For peak sets, local constructions are
often immediate in case of real analytic date, and then can easily be
carried over to the smooth case by using standard tools such as first
finding almost analytic extensions and then using solutions to the 0
problem to correct approximate solutions (see e.g. [7], [10], or [18] for
a different approach). In particular, peak sets which are manifolds, even
of the maximal possible dimension (i.e. dimension (n—2)), need not be
real analytic.

We also study the case of maximum modulus manifolds of lower
dimension, in real analytic pseudoconvex boundaries. It turns out that
for lower dimensions, maximum modulus manifolds need not be real
analytic, and the situation is quite complicated. Consider a curve in
the boundary of a strictly pseudoconvex domain with real analytic
boundary. Assume that this curve bounds an analytic disk «from
inside ». (Precise definitions are given in section § I.) Then this curve is
a (local) maximum modulus set if and only if it is real analytic
(Proposition 5).

But the situation is strikingly different for curves which bound a
disk «from outside ». Every such curve is a maximum modulus set
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(Proposition 7). For the proof, we have to employ «one sided
straightening » of a Levi flat hypersurface.

Maximum modulus sets in real analytic strictly pseudoconvex
boundaries have a remarkable property: along a maximum modulus
set one can match z,, ..., z, with holomorphic functions. This property
is of interest in its own right, and leads to the notion of what we call
a reflection set, which, roughly, is a set along which appropriate
collections of holomorphic and antiholomorphic functions agree. Another
object of this paper is then to obtain regularity results for reflection
sets.

The paper is organized as follows.

In §0 we set up notations and give precise definitions. For the
convenience of the reader we also summarize some results from [10].
In §I we study reflection sets. The reflection sets which are manifolds
of maximum possible dimension are easily shown to be real analytic.
(However a question is raised that we cannot even answer for curves
in the plane.) We then observe that, under some minimal smoothness
assumptions (on the function having maximum modulus), maximum
modulus sets in real analytic strictly pseudoconvex boundaries are
reflection sets. § II is more technical, and deals mainly with the problem
of relaxing smoothness assumptions made in I. In § III, we study curves
which bound an analytic disk « from outside ». This provides non trivial
examples of maximum modulus sets. Then in §IV, we try to exploit
the immediate relation between maximum modulus sets and some type
of holomorphic foliations. Having failed to formulate satisfactory general
results, we have preferred to work out completely two examples to
illustrate this relation. These examples indicate the difficulty in finding
a simple characterization of maximum modulus curves, even in the case
of the sphere.

When discussing maximum modulus sets, we have always supposed
these sets to be manifolds (which is of course a very unnatural hypothesis
to make on a critical set), and we have considered various smoothness
hypothesis on the «set». But we have much more worried about not
imposing unnecessary smoothness assumptions on the function which
attains the maximum modulus. The reason for it can be understood by
considering the following situation. Let y be a «complex tangential »
curve in the boundary of a strictly pseudo convex domain Q. Then vy
is known to be a peak interpolation set. This means that there exists
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a function f continuous on Q, holomorphic on Q, so that |f| = 1 on
vy and [f] < 1 on Q. Thus y is a maximum modulus curve. But unless
f is constant on y, f cannot be €' on Q (this question is discussed
in §III, in relation with pluriharmonic interpolation).

In the title of this paper, we have used the notion of « maximum
modulus sets » mainly for historical reasons. At least for necessary
conditions it is better to consider sets on which a pluriharmonic
function, continuous up to the boundary, reaches its maximum, without
insisting that the conjugate function be continuous. (To see the relation
with maximum modulus, consider log |f].)

All our studies will be local.

0. NOTATIONS AND DEFINITIONS

Let Q be a strictly pseudoconvex (bounded) domain, in C", with
%* boundary. The boundary of Q is denoted by bQ. Let E = bQ. E
is said to be a maximum modulus set if for every p € E, there exists U
a neighborhood of p in C", and a function f defined and continuous
on QN U, holomorphic on QU so that |[f| <1 on QN U and
Ifl=1on EnU.

In case the function f in the definition of maximum modulus set
can be chosen of class %, on Q n U, we will say that E is a @¢*
maximum modulus set.

The set E will be said to be a pluriharmonic peak set if for every
p € E, there exists U as above and A a function pluriharmonic on
QN U, so that A <0 and A(z) tends to O as z approaches E. Of
course every maximum modulus set is a pluriharmonic peak set.

Duchamp and Stout [10] have shown that if E is a (germ of a)
manifold of class €?, if E = bQ (strictly pseudoconvex), and if E is a
%2 maximum modulus set, then E must be totally real. In C?, they
show that if bQ 1is real analytic, every totally real, real analytic
submanifold of bQ is a maximum modulus set. In C" (n>2), they find
a necessary and sufficient condition for real analytic, totally real
submanifolds to be maximum modulus sets. This condition is related
to the integrability of the distribution of subspaces obtained by
intersecting the tangent to the submanifold with the complex tangent
space to bQ. For additional discussions of this, see [13].
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I. REFLECTION SETS, AND ¢* MAXIMUM MODULUS SETS

As indicated in the introduction, we shall study sets along which
appropriate collections of holomorphic and antiholomorphic functions
match. We were led to the study of such sets by our studies in C”",
but we begin with the special case of curves in C, since no special
definitions are needed, and even here there are interesting questions
which we are unable to answer.

I.1. Reflection curves in C.

ProrosiTiON 1. — Let T be a (germ of a) €' curve through 0 in C.
Assume that there are holomorphic functions f and g, each defined on
one side of I' and not on the same side, which are continuous up to T,
so that f = gon . If [ and g are of class €%, (k=1) up to T' and
f®0) # 0, then T is real analytic in a neighborhood of 0.

Thus, the real analyticity of y shows that g is obtained from f by
Schwarz’s reflection. Notice therefore that no extra smoothness of f
and g is to be expected.

COUTEREXAMPLE. — There exists a €' curve T', f and g, as above,
€ up to T (realizing the matching f=g along ') so that T is not real
analytic.

According to Proposition 1, in the couterexample, f and g need to
have all their derivatives vanishing at some point. Also note that the
functions z*> and z*® match along the positive real axis and the positive
imaginary axis, and so it is easy to produce counterexamples where the
curve v is Lipschitz. Thus in our counterexample, the fact that y is of
class €' is significant.

QUESTION. — Are there any counterexample as above with a curve T’
of class €* or oven €*?
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Proof of Proposition 1. — 1) Case k = 1.

For r > 0, r small enough, let Q*, respectively Q7 , be the side of
I' in the set {ze C,|z|<r} on which f, respectively g, is defined. The
hypothesis f'(0) # 0 implies g'(0) # 0, since f = g along I'. Thus if r
is small enough, f and g are diffeomorphisms from Q* onto respectively
f(@Q*) and g(Q7). We have f(I') = gT). The crucial but trivial
observation is that Q* and Q™ are mapped under f and g to the same
side of the curve f(I'), as a consequence of the Cauchy-Riemann
equations.

Now we claim that the restriction of the function z to the curve T
has a holomorphic extension to a neighborhood of 0. Indeed this

extension is given g7 '(f(z)) for ze Q*, and f~'(g(z)) for ze Q™. Let
¥ be this holomorphic extension. Of the two equations

Re¥ = Re z, Im¥Y=—-Imz,

one at least must be non-degenerate (rank 1), since due the Cauchy
Riemann equations it is not possible that VRe ¥ = VRez and
VIm¥Y = — VImz at 0. The implicit function theorem then shows
that this equation defines I' as a real analytic curve.

2) The case keN, k> 1, follows easily from the case k= 1.
Indeed if f(0) = f'(0)= --- = f*DO0)=0 and f®(0)# 0, one
considers the functions f“* defined on one side of I', and similarly
g"*. One needs to check carefully that fY* and f'* are €', and, with
a correct choice of determinations of k-th roots, that f'* and g'*
match along I'. The details are left to the reader.

Counterexample. " Off the negative real axis we define

z'* by (pe®)'t = p”“elz where — 1 <0< + 7. Let ' be the curve
made of the negative real axis and the set of z = x + iy so that
Rez > 0, Im (1/z'%) = n. Then I is a " curve and we set f = e~ *"
above I' and g = ¢ ="' below I'. Along I', f = 2. At 0, f and g
are > but all their derivative vanish. The curve I' is not real analytic,
but is of class €.

Remark. — Tt can be shown that it is not possible to replace e~ /'
in the couterexample by another function defined also off the negative
real axis in order to get a curve I' of class &*.
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I.2. Reflection sets in C".
We begin with two definitions.

DeriNiTION 1. — If E = C*, a wedge W' with edge E is a set
obtained in the following manner. Let T" be nonvoid open cone in C",
and r > 0. Then set

W* = {x+yeC',xe E,yel|y|<r}.
The opposite wedge W™ is given by

W~ ={x—yeC',xe E,yelly|<r}.

Note. — The reader may prefer to restrict attention to the case
where there is some transversality of the edge and the cone. In our
definition, however, we accept the possibility that £ = R" and that T’
contains a non zero vector in R". In this case, W' and W~ are
neighborhoods of R"™. This is certainly not the case of interest, but
there has been no need to rule out this case explicitly.

DerINITION 2. — A set E in C" is a reflection set if there exist two
opposite wedges W* and W~ with edge E, and two n tuples of
holomorphic functions f, ..., f, defined on W*, and g,, ..., g, defined
on W~ of class € on the closure of respectively W* and W~ so that
dfy N ---df, #0 and f;=g; on E.

Every totally real, real analytic manifold is a reflection set (Schwarz
reflection). It is immediate that a manifold which is a reflection set
must be totally real. In §II, we will see that, in case E is a totally real
manifold of dimensionn, of class €%, the ' smoothness requirement
can be dropped for either the fjs or the gjs. This is used in applications,
where g; = z;.

First, we make the following easy observation.

LemMmA 1. — Let M be a (germ of) €' manifold of real dimension n
through 0 in C". Assume that there exist U a neighborhood of 0 in C",
Y., ..., ¥, holomorphic functions in U so that ¥; = z; on M ~ U. Then
M is real analytic (in a neighborhood of 0), and totally real.
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Proof: — From the 2n equations
Re ¥; = Re z;, Imy,;, = — Imz,

one can extract n independent equations, which shows that .# (defined
by these n equations) is real analytic. And .# is totally real due to
the Cauchy-Riemann equations.

A generalization of Proposition 1 is the following.

ProrosiTioN 2. — If E is a €' manifold of dimension n in C*, and
is a reflection set, then E is real analytic.

Proof. — Set f=(f1,.--,fn), € =(g1,-..,8,). Then f and g are
local diffeomorphisms. In a neighborhood of some point peFE,

z— f71(g(2)) and z — (g ~'(f(2)) define local extension of the restriction
of zZ to opposite wedges (after shrinking W* and W~) by Lemma 2
below. Due to the edge of the wedge theorem (which applies even if
M is only of class €', see [16]), this shows that the restriction of Z;
to E has an holomorphic extension to some neighborhood of p.
Therefore, according to Lemma 1, E is analytic.

The proof is complete, except for the fact which has been used
above: that f 'og and g 'o f are defined on opposite wedges.

LEMMA 2. — Let E be a €' manifold of dimension n in C*, W* be
opposite wedges with edge E and f = (fy,...,fn), &€ = (g1,..,8n) aS
in Definition 2. Let pe€ E. Then there exist U a neighborhood of p in C"
and opposite wedges W * with edge EnU, #* < W* so that
fOWT)cgW™) and g9 ") = f(WT).

Proof. — We first have to do some preliminary work, due to the
fact that our definition of wedge is not the most convenient one. We
can assume that p = 0 and that R" is the tangent space to E at 0.
Fix yeI', y¢ R". We can find p,, ..., p,, €' real valued functions
so that, for some neighborhood U, of 0:

W,+ = {ZG UOapj(Z)>0j=13 ap} = W+
W'~ ={zeU,pj(z2)<0j=1,...,p} = W~
and

d
7 PO+m] - >0.

t=0
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Of course p; = 0 along En U,. Write y = vy, + iy,, y, and y,eR".
Since v, is tangent to E at 0 one gets

d
ZIp(0+ti > 0.
dt[p,(O tiy,)] . 0

Therefore we can choose I'” and ' > 0 a small open conic neighborhood
of iy, so that after shrinking U, if necessary :

W*t o W* o {xty,xe EnU,,y eI, |y I<r}.

Extend f and g to local difffomorphisms f and z on a neighborhood
‘of 0. Then f(W'") (respg(W' 7)) is defined by

{p;of 71> 0} (resp. {p;027'<0}).

Since 7y, is tangent to E at 0 one has

df

F)=dg| (1))

And since df and dg are C linear by the Cauchy-Riemann equations,

af (iv1) .

0

(iv,) = —dg
0

By the: chain rule -

d .
g Piof Tog@+uy)]l - < -0
A : : . t=0

and

<0.

t=0

d. . .
E[p,—og Yo f(0+tiy,)]

By continuity there exist 4 > 0, U a ne_ighborhobd 6f 0 in C.", UcU,,
I'” a coni¢ neighborhood of iy, I'" = I, so that for every ge En U
“and y"eI": '

< = Aly"|

=0

d | r— —' "
pios tog(g+ty")]
and o '

> — Aly"|.

t=0

d - B}
E[pjog Yo f(g+ty")]
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If ge ENnU and y" eI, |y"| = 1, then for t < 0, |t| small, one has
pjof tog(gtty) >0, so  ggtry")ef(W'™).

Similarly, for ¢ > 0p,0g o f(qg+ty") <0, so f(g+ty")eg(W' ™).
Therefore we can take

W ={qty" €eC";qe EnUy" el ,|y"|<r"},

where r” > 0, is taken small enough. Q.E.D.

1.3. ¥* maximum modulus sets in real amalytic
strictly pseudoconvex boundaries.

ProrosiTioON 3. — Let Q be a domain in C", let E < bQ, and assume
that bQ is strictly pseudoconvex and real analytic in a neighborhood of
E. Suppose there exists a neighborhood U of E and a function f of class
@*(k=1) on Q U, holomorphic on Q" U, so that |f| =1 on E and
[fl <1 on Qn U. (This means that E is a €* maximum modulus set.)
Then there exist V a neighborhood of E and functions g,, ...,g., of
class €*' on Q n V, which are holomorphic on Q NV so that g; = z;
on E. If k> 2, it follows that E is a reflection set.

Proof. — By shrinking U if necessary, we can assume that
UnQ = {zeU|p(z) <0}, where p is a real analytic strictly plurisub-
harmonic function on U. Let

M = {(z8) €C" x P,_,(O)|z€bQNU, §=0p(2)},
where P,_,(C) is the (n—1)-dimensional complex projective space, and
£ = 0p(z) means that & is the point given in homogeneous coordinates
0 0 . . . . ..
by <—87p (2), . "’5Z£(z)>' Since bQ is strictly pseudoconvex in U, it is
1 n

well known that M is totally real. (This is the essence of the reflection
principle in several variables as developed by Lewy, Webster, PinCuk,
et al., see[20].)

We will denote by x = (%, %.) the antiholomorphic reflection accross
M. That is,

x:(2:8) = (Z7=x:(28),8 =%.(2,8))
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is defined in a neighborhood of M, is antiholomorphic, and satisfies
x(z,8) = (z,8) if (z,§)eM.

At every point of E, 0,(f) = 0. This follows immediately from the
implicit function theorem, or if one prefers, by differentiating f7f.
Moreover, at any point of E, we have df # 0 by Hopf's Lemma. So
along E, dp and df are proportional. Consequently, they define the
same element

dp(2) = 0f(2)

in P,_(C) when ze bQ. (Again, we denote by 5? (z) the elc;ment in

P,_, given in homogeneous coordinates by <g (2), .. .,gf (z))~> Then
1 Zp

to obtain the first part of the Proposition, set

(©:(2), .. ., 2a(x)) = %:(2,0/(2)).
On FE, _
(gl(z)5 LR 3gn(x)) = Xl(zaap(z)) = (21’ L ’En)’

And for some neighborhood V of E, g,,...,g, are defined and of
class €' on Q n V, and are holomorphic on Q n V.

If fis €%, g,,...,8, are €' on Q N V. In Definition 2, on then
has to take wedges W* with edge E. Choose W~ < Q n V, and take
(f1r---sfn) = (21, ...,2,) on W* . This shows that E is a reflection
set.

From Propositions 2 and 3 we deduce immediately :

CoroLLARY 1. — Let Q < C" be domain and let E be a submanifold
of bQ of class € and of real dimension n. If bQ is strictly pseudoconvex
and real analytic in a neighborhood of E, and if E is a €* maximum
modulus set, then E is real analytic.

Notice that this also has consequences for functions f which have
maximum modulus along E. Let f be any holomorphic function on Q
(or on Q n U) which extends continuously to E, (E is as in Corollary 1),
so that | f| is constant along E. Then by the edge of the wedge theorem
f has an analytic extensions to some neighborhood of E.
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Let us mention another Corollary, which provides examples of
smooth curves which are not maximum modulus sets. We say that a
(piece of simple) curve I' in bQ bounds a disk from inside Q if, first,
there exists a continuous parameterization y:(—1,+1) - I' which, for
some ¢ > 0, extends holomorphically to the rectangle R, where

R ={(x+tiy)eC|—-1<x<+1,0<y<g},

and second, yY(R,) = Q. (In this case, the extension is still denoted
by 7).

COROLLARY 2. — Let Q be domain in C". Let T be a curve in bQ)
which is a €' maximum modulus set. If T bounds a disk from inside Q
and if bQ is strictly pseudoconvex and real analytic in a neighborhood
of T', then T is real analytic.

Proof. — The problem being local, we may assume that there exists
a neighborhood U of T" and a %' function f on Q n U, holomorphic
on QN U, sothat |[fl]=1onT,and |f| <1 on QAN U. Let vy be a
parameterization as above. The map vy extends analytically across
(— 1,+1) by setting :

Y(© = (@), - ..£.(v©))

for { in some neighborhood of (—1,+1) in C and Im ({) < 0. Here
the g;’s are given in Proposition 3. Along (—1,+1), y" # 0; this follows
from Hopf’s Lemma applied either to f oy or p oy (p a plurisubharmonic
defining function). Hence I' is real analytic.

II. PLURIHARMONIC PEAK SETS

I1.1. Regularity of functions.

For simplicity we wil first consider the case of curves. Let Q < C”
be a domain with ¢* boundary, and let I' be an open arc of a simple
%' curve in bQ which is transverse to the complex tanget space to bQ
at each point. We suppose that bQ is strictly pseudoconvex in a
neighborhood U of the curve I', and that QN U = {z e U|p(2) <0},
where p is a plurisubharmonic function on U.
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DerFiNITION. — The curve T satisfies the condition (AH), (standing
Jor almost holomorphic), if and only if there is a €' parameterization

v:(—1,+1) - T
with v # O such that vy extends to R,, the closure of the rectangle

R, ={{=x+iy|—1<x<+1,0<y<1},
. : ) 5 ay .
in such a way that v is of class €' on R,, y(R,) < Q, Ei is of class

— 0
%* on R,, and 6_1( vanishes to second order along [—1,+1]. Such a
parametrization will be called a special parameterization.

Examples of curves satisfying (AH) are the following.

Any €' curve which bounds a ¢' disk from inside Q; (i.e. as in
1.3, Corollary 2, but with y of class ¥' on R,). Here the transversality
condition comes from Hopf's Lemma.

Any &° curve with is transverse to the complex tangent space
to bQ.

ProroSITION 4. — Assume that T is a €' curve in bQ which satisfies
(AH). Let vy be a special parameterization of I'. Let h be a negative
pluriharmonic function defined on Q such that h(z) tends to 0 as z

oh
approaches T with ze Q. Then the functions avz—oy, defined on R,
j
extend continuously to (—1,+1). Moreover, if xe(—1,+1), if p = v(x),
and if we set

. OA
M(p) = lim 2= 0 7(0).
tox 0Z;
then

Y e # 0,
j=1

and for every j, ke {l,...,n},

op op
_ )\’ —_— )\4 = R
|:6Zj k oz, ]:l » 0
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If A is assumed to be of class €' on Q the Proposition is
straightforward. The meaning of the last assertion is that d,A = 0 along
I' (and since A is real valued, d,A = 0 as well). The necessity of this
is clear since one must have d, A = 0 along I'. The condition that
Y IA,(p)| # O comes from applying Hopf’s lemma. Thus the significance
of the Proposition is the absence of a priori smoothness assumptions
onA.

Proof of Proposition 4. — The function Aoy is defined on R, and
has limit 0 along the edge [—1,+1]. For any ae(0,1) the Laplacian
of Loy is bounded in a neighborhood of [ —a, +a]. Indeed, since A is
pluriharmonic, one has

3*(0 ) 0,
st © = 2Re Z_(Y@)agaz@
n 2 a
+2Re ¥ 0O L OO

where v = (Y, ...,Y,). But as { approaches [ —a, +a] the following
estimates hold :

1
o = o)

2 - 1 .
IVAE) 0((Im c>2> ’

0%y, _ )
acac@} — 0(m);
6“@1 — 0(m L))
6“(0' - o(1).

The following standard Lemma applied to smaller rectangles now
shows that Loy has a €' extension to R, U (—1,+1).

LemMmA 3. — Let u(x,y) be a function defined on R,. If Au is bounded
and u(x,y) tends to 0 as y tends to O, then u has a €' extension to
R, u(—1,+1).
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Proof of Lemma 3. — Define i (resp Ka;) an extension of u (resp Au)
to (—=1,+1) x (=1,+1) by

d(x,y) = —ulx,~y), if y<0
and -
Au(x,y) = — Au(x,—y), if y<0.

In the sense of distributions on (—1,+1) x (=1,+1), Ail = Au. There
is no « jump term » of the function or the derivative along (— 1, +1) x {0}.
(Approximate u by u(x,y+¢€) and let € tend to 0.) Thus Aii is bounded
on R, and hence u is of class "' since the gradient of the logarithmic
(Newtonian) potential is locally integrable.

This ends the proof of Lemma 3, and we continue with the proof
of Proposition4. We have obtained that Aoy has a €' extension to
R,u(—1,+1). Let xe(—1,+1) and set p = y(x). Due to Hopf’s
Lemma, Ao y() < — Cdist (y({),bQ) for some constant C > 0. Using

. - 0
the transversality hypothesis on I', one gets that @(koy)(x) #0.

Therefore the function

n

,Zl — (Y(C)) i

has a nonzero limit as { tends to x ({e€ R,). Next we claim that for
any j,ke{l,...,n},
op 0L 0p OA
(-3~ ——"f) (@) - 0

as { » x. For { close to x, and for some constant C > 0 we have :

176)

dist (v(€),bQ) < CIm ¢, and - %Im@ <Ay(E€) <0

since Aoy is €' up to the real axis. Since I' is transverse to the
complex tangents, we also have for some constant C > 0,

dist (Y(0),bQ) > lImC, and p(y@) < — CIm¢.

Let 1 <j<k<n. Forr>0 set

0 0
Ag(r)={Y(C)+t<0,-~, - TZ(Y(C))’ = ~,a—§j(Y(C)), . 0) teC,t|<r}
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op 0
(where a— and — a—p appear respectlvely in the j-th and the k-th entry
Zj

and there are zeros elsewhere) This is a complex disk centered at y(0),
tangent at y(C) to the level set of p through y({). For C large enough,

inctlependent of { close enough to 0, A, (%,‘/Im C) c Q. Then one
gets

dp Oh  dp N B

This is consequence of the following simple fact, applied after rescaling
to the function
.,0)> :

if W is a harmonic function defined on the unit disk which satisfies p < 0,
p@) = — 1, then |Vp(0)| < 2.

of —dp
,'a_zk(’Y(C))’ tees d ;

t > Ay@) + t<0,

After a linear change of coordinates, we can assume that

=0.

op o
azl(p)aéO, 5zz(p)

A
The quantities S—(y(&’,)) solve the following linear system (*) of n
z

j
equations with n unknown X;:

;;} ©)X; = Z—(v(c» % ©
op _(0p oA 8p oA
20O - L, = (a o azl>( ©)

dp 9% dp oA
<6 oz 5‘;)( ©).

We have just proved that the right hand sides have limits as {
approaches x.

ap _ 8_p
5 O, = 2O

By the transversality hypothesis on I', —C(x) # 0. The coeflicients

of the equations have limits as { approaches x. For { = x, the system
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has rank » and reduces to

4 W _ v A dy;
dc ()X, + o C(x)X = mzazj(v(i;)) i ©
X,= 0
X,= 0.

By solving the system of equations (¥), one sees that as (  tends

to x({eR,)), (y(C)) has limit A;(p). In the above coordinates

Ao(p)= -+ = kn(p) 0, and Z IL;j(p)| # 0. The last statement of the
j=1
Proposition is just the formulation of this fact in arbitrary coordinates.

IL2. Curves which bound disks from inside Q.
The following generalizes Corollary 2 for €' curves:

ProrosITION 5. — Let Q = C" be a domain with €* boundary. Let
" be a curve in bQ with a €' parameterization y: (—1,+1) > I which
extends holomorphically to a rectangle

R.={(x+tiyp)eCl-1<x< +1,0<y<c¢g}

so that y(R;) = Q. Suppose bQ is real analytic and strictly pseudoconvex
in a neighborhood of T and suppose that T is a pluriharmonic peak set.
Then T is real analytic.

Proof. — By applying Hopfs Lemma to poy (with p a local
defining function), one sees that ¥ # 0 and that T" is transverse to the
complex tangents. We can apply the results from Proposition 4. The
problem being local, we can assume that there exists A a pluriharmonic
function defined on all of Q so that A < 0, and A(z) tends to O as z

iy o\
approaches I'. Notice that the functions Fra are holomorphic
1 Zn

on Q. As { e R, approaches x € (—1, +1), Proposition4 shows that the
point () in P,_,(C) given in homogeneous coordinates by

oA oA
<£ (y(C)),...,g(y(Q))) tends to the point in P, ,(C) given in
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op (y(x)))- And, as in
0z,

Proposition 3 and Corollary 2, the holomorphic extension of y accross
(—1,+1) is obtained by setting (for Im {<0):

0
homogeneous coordinates by (_a;f) y(x)),...,
1

v(© = 10 ©).EQ)).

I1.3. Maximum modulus sets of maximal dimension.

We now turn to the generalization of Corollary 1.

ProrosITION 6. — Let Q < C" be a domain. Let E be a submanifold
of bQ of real dimension n and of class €*. If E is a pluriharmonic peak
set, and if bQ is real analytic and strictly pseudoconvex in a neighborhood
of E, then E is real analytic.

Proof. — Let pe E and parameterize a neighborhood of p in E by
0
a mapping y:(—1,+1)" - E, where y is of class ¥°, so that %(x)
1

is transverse at each point to the complex tangent space at the
. 0 .
point y(x), and igl points towards Q. We can extend y to a &°
X1

function defined and one-to-one on R, x (—1,+1)"!
where R, = {{=(x;+t1y,)eC|—1<x;<+1,0<y,<1}, SO that

0 .

YR X (—1,+1D"* ") = Q and f—vamshes to second order along y, = 0.
1

Thus E is locally the boundary of a 42 manifold £ in Q, of real

dimension (n+1), transverse to bQ along FE, and foliated by two

dimensional leaves E,, . . parameterized by § - y((x,,...,X,),

CeR).

Let A be a pluriharmonic function that again we can assume to be
defined on Q, so that A < 0 and A(z) tends to O as z approaches E.
Going through the proof of Proposition4, carrying (x,,...,x,) as
a parameter, it follows that as ze E approaches some point peE,

then or (2,... ,Q (z)] has a limit (A (p),...,A,(p). Also,
0z, 0z,
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n

Y IA(p)| # 0, and for every j, ke{l,...,n},

[9‘37» a”7»,-]<p)=o.

0z k—b—zk

But more is true. Let W, be a wedge with edge E so that W, = Q,
and let W™ be a strictly smaller wedge with edge E, in the sense that
_ oA oA
W*<c W,uE. Let peE. Then (5;(2), . ..,a——(z)> tends to

1 Zn
M(p), ..., (p)) as z tends to p, ze W* and not only ze E. (See

. . o\ . . .
[16], Proposition2, with k = 1: P is a function whose growth in W,

Zj

oA
is controlled by Fr O(dist (z,E)™"), and which has continuous
i

- aA .
boundary values along E(A;). So the restriction of P to W' is
j
continuous up to the edge E).
The equations satisfied by (A(p),...,A.,(p)) show that

M), ..., A.(p)) and (gzg ), ... E?E (p)> define the same element in
1

0z,
P,_,(C). The proof of Proposition3 can then immediately be adapted
to provide us with functions g,, ..., g, continuous on W™* | holomorphic

on W7, so that on E, g; = z;. But the smoothness of g; restricted to
E implies the smoothness of g; on smaller wedges (see e.g.[8]). And
since we could as well start with a wedge strictly larger that W*, we
get that g; is of class €' on W* . So E is a reflection set, and therefore
is real analytic. This completes the proof.

. ar . . _
Remark 1. — After proving that o s continuous on W', we

know that A is the real part of a holomorphic function which is
continuous on W*. By([8], or by theorem 3 in[15], we can then get
directly the €' smoothness of the g’s on W*.

Remark 2. — Let I" be a curve as in Proposition 5. Any holomorphic
function which has maximum (therefore constant) modulus along I'
extends locally, accross bQ to the complexification of I', by Schwarz
reflection. From this, one can sketch an alternative approach to the
case of maximum modulus sets of maximal dimension. Consider M as
in Proposition6. Pincuk has constructed disks with (part of the)
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boundary in M [14]. A precise version of this construction, as in[9],
shows that one can foliate M by curves (I',) which bound analytic
disks «from inside». If f is a holomorphic function on Q, with
maximum modulus along M, each I', is real analytic, and f extends
locally accross bQ, to the complexification of I',. This gives a CR
extension of f accross bQ to M a (n+ 1) dimensional manifold (foliated
by holomorphic disks) with M as boundary. If one has obtained enough
smoothness of M, and by applying results of [1] or [2], this is enough
to guarantee that f has a holomorphic extension to a neighborhood
of M. The real analyticity of M is then easy to get by studying the
equation p = 0 in the real analytic hypersurface : | f| = 1.

III. CURVES WHICH BOUND DISKS FROM OUTSIDE Q

II.1.

In this section we study curves I' in the boundary of a real analytic
strictly pseudoconvex domain which bound an analytic disc from outside
the domain. Our main objective is to show that such curves are
maximum modulus sets for the domain.

The main idea behind the construction of the appropriate holomorphic
function is the following: At each point w of the boundary of a
domain Q < C* we wish to find a nonsingular complex hypersurface
¥, passing through w, depending real analytically on w, which stays
outside the domain Q. Assume that I' is transverse to the complex
tangents, then the union

= =,
wel
of the hypersurfaces X, for weI form a real hypersurface in C",
which is foliated by complex hypersurfaces, and hence is Levi flat. If
the curve T is real analytic, then this hypersurface is real analytic, and
hence it is locally biholomorphically equivalent to

{(z4,...,2,) € C*"Im (z,)=0} = (RxC" " 'c=C"}.

The first component of this change of variables is then a holomorphic
function on a neighborhood of a fixed boundary point of the domain
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whose imaginary part vanishes on I' and is non-vanishing off T" (since
the hypersurfaces Q, stay outside Q). Hence this first component would
give the desired « maximum modulus function ».

In case the curve I', and hence the real hypersurface ¥ is not real
analytic, one can still look a «one-sided» holomorphic change of
variables, (defined and holomorphic only on the side of ¥ containing
Q) but still mapping £ to R x C*7'. It is rather easy to see that such
one-sided change of variables need not exist in general (see[4] for a
detailed study, and see also[3]). However, in our case, we shall see
that if I" bounds an analytic disc from outside, then an appropriate
one-sided change of variables does exist.

For a strictly pseudoconvex domain, one has considerable latitude
in choosing a complex hypersurface X, which contains we dQ but
which stays outside Q. For our purposes, the correct choice of such
hypersurfaces is given by the vanishing of the polarization of the real
analytic defining function. This gives an antiholomorphic dependance
of £,, on w. We begin by recalling these concepts.

Let Q = C" be a domain with real analytic boundary. Then there
is a neighborhood U of 6Q and a real analytic defining function p: U — R,
so that for all ze U,

Vp(z) # 0
and
QN U= {zeUlp(z)<0}.
DeFInITION. — A polarization of the defining function p is a

holomorphic function R: W x W — C, where W is an open neighborhood
of 0Q and W x W Ux Uc C*"x C*= C*™ such that for z e 0Q,

R(z,2) = p(2).

(At the risk of confusion, we use the notation W, and U to denote
complex conjugation. In the rest of the paper, unless otherwise noted,
overlining continues to mean closure).

The polarization is uniquely determined by the defining function,
since at any point z € dQ,

6a+BR _ aa+ﬁp
o OB = o

(2).
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For every we W set
2, =1{ze W|R(z,w)=0}.

Then X, is an analytic variety in W. Moreover, since Vp(w) # 0, it
follows that the variety X, is nonsingular at the point w. Hence, after
shrinking W if necessary, we may assume that for each we W, X, is
a nonsingular holomorphic hypersurface in W. The following proposition
is well known :

LemMMmA 4. — If the domain Q is strictly pseudoconvex at a point
wo€ 0Q, then there is a neighborhood U of w, so that for every
wedQnU,

T,NnQNU={w}.

Remark. — The family of hypersurfaces {Z,} defined above seems
to depend on the choice of the defining function for the real analytic
domain Q. However, it is not hard to see that the family of germs of
the hypersurfaces {£,} is in fact independent of the choice of defining
function, and hence is an invariant of the domain.

First, note that the real analytic defining function for a domain
with real analytic boundary is uniquely determined up to multiplication
by a non-vanishing real analytic function. Precisely, if p, and p, are
two real analytic defining functions, defined on neighborhoods U, and
U, of 0Q, then there is an open neighborhood U, of 0Q in U, n U,,
and a non-vanishing real analytic function h defined on U, so that for
all zeU,,

p1(2) = h(z)p,(2).
Next, two different defining functions p, and p, for the same domain

with real analytic boundary lead to two different polarizations R,(z,w)
and R,(z,w). However, it follows that on some neighborhood of

0Q x 9Q there is a nonvanishing holomorphic function h so that
R, (z,w) = h(z,w)R,(z,w).

From this it follows that the family of germs of hypersurfaces {Z,}
defined by the polarization R, is the same as the family defined by R,.

We now turn to certain preliminaries required in the construction
of « maximum modulus functions ». Assume that 0 e 0Q, and that we
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have fixed a defining function p for Q with associated polarization R
such that
ap 1
X =—,
62,( ) 2i
and
(—92 ©0)=0 for j =2 n
3, , j N
This condition can always be achieved by a translation and a unitary
change of variables. They amount to requiring that for z near the
origin,
p(z) = Im(z,) + O(Iz]*).

LEMMA 5. — There are neighborhoods W, of the origin 0,_, in C"™*
and W, of the origin 0, in C* and a unique holomorphic function F:
W, x W,— C so that

F(0,-1,0,) = 0;

R(F(zgy oo sZn Wiy oo esWn)y Zay oo ey Zns Wi, o oawy) = 0
oF oF
—0,-,,0,)=1; —(0,_ =0 if j>1.
awl( n—1» n) s 6wj( n I’On) J ]

Moreover, for we W,, if the holomorphic mapping G, : W, —» C" is given
by

Gw(227 -—-azn) = (F(ZZs'-':zn; V_V)’Zza ..,,Z,,),

then G,: W, — X, is a nonsingular parameterization of the holomorphic
hypersurface Z,, .

Proof. — The proposition is an immediate consequence of the chain
rule and the holomorphic implicit function theorem applied to the
equation

R(z\,z5, .. yZyi Wi, ...,w,) =0

since we have

OR _op 1
52—1(0,0) = o ) = Tha 0.
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Notation. — Let T' = 0Q be a curve of class €*, k > 1, passing
through 0, which is transverse to the complex tangent space at 0.

Let :
y: (Yls---aYn):(_1’+1) - W2

be a ¢* parameterization of T" near 0. The transversality of the curve
I" means that

v1(0) # 0.

For each xe(—1,+1), we let X, = X,,, denote the germ of the
complex hypersurface defined by R(z,y(x)) = 0. We also let

= | =.

—l<x<+1

As we now see, X is a smooth real hypersurface in C". Indeed, define
a mapping

Y:(-1,+1) x W, - C"
by setting

T(X;ZZ’ R aZn) = (F(ZQa e ’Zn;Y(x))>ZZ, s azn)'
Clearly ¥ is again of class ¢*, and one has:
LEMMA 6. — There is an open neighborhood W of 0 in R x C*™!
so that ¥ is a €* diffeomorphism of W onto W(W). Also, there is an

open neighborhood V of the origin in C" so that Y (W) =XnV, and
hence £ NV is a real hypersurface in V = C" of class €*.

Proof. — If we write

lPl(x’z?n LR ,Zn) = F(ZZa e aZn;Yl(x)s L 5Yn(x))

then this proposition is an immediate consequence of the fact that

ov, L OF
(00,0 = ¥

j=19W;j

oF
(0;0)v;(0) = a—WI(O;O) v;(0) # 0.

Remark. — Since X is a smooth real hypersurface through the origin
in C", it divides sufficiently small neighborhoods ¥V of the origin into
two parts, say V*. We can describe these two sides as follows. The
curve y(s) is contained in £ and hence the vector y'(0) is a vector at
the origin in C" which is tangent to X. Since the curve I' was assumed
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to be transverse to the complex directions, the vectors =+ 1y'(0) are not
tangent to bQ, and hence are not tangent to X. Thus they point to
opposite sides of the hypersurface . If V is a small neighborhood of
0, we call V* the parts of ¥ towards which the vectors £ 1y'(0) point.

The parameterization y of the curve I' is initially defined on an
interval about the origin in R, but we can always extend the mapping
Yy to a €* function in a neighborhood of the origin in C so that

0
(A) SO =0.

Any such extension then gives an extension of the mapping ¥ to a
neighborhood of the origin in C x C"™! by setting

Y(x+1y,zy,...,2,) = (F(zgy ..., 2p,Y(Z—1Y),20, ..., 2,).

We let
H™ ={(z,,2z5,...,2,) €C" |Im (z,)<0}.

LEMMA 7. — Under the hypothesis that equation (A) is satisfied, there
is a neighborhood W of the origin in C x C"~' = C" so that the mapping
¥ maps W diffeomorphically onto a neighborhood V in C", and ¥ maps
H™ n W diffeomorphically onto V™, i.e., onto the side of the hypersurface
T in V towards which the vector — 1y'(0) points.

Proof. — Write z; = x + 1y. Equation (A) says that the differential
of the mapping ¥ from C” to C" at 0 is a complex linear map, and
its Jacobian determinant is thus given by
6‘}‘

n

Z mm%mﬁ l (0;0)¥;(0)| # 0.

. . . o 0
H~ is the side of R x C"™! given by the direction of the vector F
y

and the differential of ¥ at the origin carries this vector to — 1y’(0).

We are now in a position to state and prove the main result of
this section. If Q = C" is a domain, and I = bQ is a curve, we say
that T bounds an analytic disc from outside Q if the parameterization
v of the curve I' can be choosen so that

(1) y(s) extends smoothly to a holomorphic function in a rectangle
in the upper half plane near the origin R, = {(s+ut)||s|<1,0<t<g}.

2 Y(R)NQ=0.
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So far, in this section, in order to simplify the statements, we have
considered domains with global real analytic boundary. But it is clear
that this is local theory, and that it is enough to have the real
analyticity of the boundary in the neighborhood of some point. For
the final statement, we wish to be precise :

ProrosiTioN 7. — Let Q < C" be a domain and let w,e bQ. Suppose
Q has real analytic boundary near w,. Also suppose bQ is strictly
pseudoconvex at w,, or more generally, suppose there is a neighborhood
U of w, so that for we dQ N U

T,NQNU={w}.

Suppose T is a curve in bQ through w, class €* which is transverse to
the complex directions, and suppose that I" bounds an analytic disc from
outside the domain Q. Then there is a neighborhood U < U of w, and a
function g of class €* on Q ~ U and holomorphic on Q n U so that
1) Im(g@k)=0ifzel' n U;
(2 Im(g(z)) <0 if ze (@ n O)\T.

Proof. — Since y extends to a holomorphic function on R, it
follows that

9 .\ _

i.e. equation (A) is satisfied. But then the equation

Q(ZlazZ) e 5Zn) = (F(ZZa s azn;Y(E))’ZZ5 I ’Zn)

shows that W is holomorphic on R, x W,. (Here the bar over R,
denotes complex conjugation.) Hence ¥ is a diffecomorphism in a
neighborhood of the origin and which gives a biholomorphic mapping
of R, x Wy to V™.

On the other hand, the condition that the curve I' bounds a disc
from outside the domain means (using transversality) that

p(y1(x+1y), ..., Ya(x+1y)) = Cy

for y > 0. Taking the derivative with respect to ¢t then shows that

"
Re(z 3 52‘3(0) y;(0)> >0.
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This means the vector iy'(0) points outside the domain, and hence the
domain is locally contained in the image of R, x C*~! under the
biholomorphic mapping y. The first component of the inverse of this
biholomorphic mapping is then the required function g. This completes
the proof.

II1.2. Almost analytic version — a question.

If T is a smooth curve, say in the unit sphere, which is transverse
to the complex tangent space, I' may fail to be a maximum modulus
set for holomorphic functions as shown in I and II. However, it is
immediate to adapt the proof given above to show that such a curve
is the maximum modulus set of an « almost analytic » function f ; that
is to say, if I is €*, then 8f vanishes to infinite order alongI".

This is not without application. It provides a « geometric explanation »
for pluritharmonic interpolation [6]. Thus suppose |F| = 1 alongI'. To
interpolate ue ¥(I") by a pluriharmonic function U, one interpolates
uo (Flr)~! on F(I') (an arc in the unit circle) by a harmonic function
on the disk. If F is holomorphic, U = uo F is a solution to the
problem. If F is only « almost analytic » one has to solve a 00 problem,
which leads to a compact operator (as in[6]). If one wants to get in
the same way the generalization by Berndtson and Bruna[5] of the
result of Bruna and Ortega, one is lead to the foliowing :

QUuESTION. — Given T a « smooth » arc in the sphere (with NO
hypothesis of transversality to the complex tangent) is it possible to
find a function F defined on the closed ball so that : |F| =1 along T,
Fis 1 —1 on I', 0F vanishes to (high or) infinite order along T

(i.e. OF=0(dist(-,T))?

If the curve I' is complex tangential, which is the case « opposite »
to the one considered so far, the answer is positive but the function F
cannot be €' along I'. The same question could of course be asked
for general strictly pseudoconvex hypersurfaces. Recall that pluriharmonic
interpolation is a phenomenon which basically happens only on
interpolation manifolds or along arcs ([17]).
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IV. HOLOMORPHIC FOLIATIONS - EXAMPLES

Any holomorphic function with nonvanishing gradient on a domain
gives raise to a foliation of the domain by the level sets of the function.
In particular, a ¢' holomorphic function has nonvanishing gradient
near its maximum modulus set, and hence gives rise to a (local) foliation
of the domain. The object of this section is to construct a function
with maximum modulus along some curve or set, by first obtainiﬁg the
associated foliation. Having failed to reach a satisfactory general resuit,
we just illustrate this approach with two examples. As indicated in the
Introduction, this sheds some light on the difficulty of characterizing
those transverse curves which are maximum modulus sets.

IV.1.

Let us consider a curve I' in S, the unit sphere of C2 (The
dimension n=2 is used here for simplicity of notations only.) If T" is
real analytic then I' is a maximum modulus set. Indeed this follows
from Corollary 2.5 in [10] by writing I' as the intersection of two real
analytic, totally real manifolds of dimension2. In §II we saw that T’
is also a maximum modulus set if I' bounds a disk from outside. We
wish here to give an example of a curve I', transverse to the complex
tangent, which does not bound a disk from outside but is a maximum
modulus set. Despite the fact that the curve is easy to define, the
constryction of a function which takes maximum modulus along I is
far from explicit !

Construction of the curve.

Let h be a holomorphic function defined on the unit disk in C,
which extends smoothly to the closed unit disk, and so that h(z) — (1—2)
vanishes to infinite order at the point 1, but h # 1 — z. For example,

1

take h(z) = (1—2z) + exp( ! 1>, where (1—z)? denotes the square
(1-2)

root of (1—2z) with positive real part.

For ¢ > 0 let I', be the set in S, defined by the equation z, = gh(z,).
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The equation z, = 0, considered as a system of two real equations
on S,, has rank 2 along the circle I'y = {¢/°,0)}. By the implicit function
theorem, for & small enough, I', is a smooth curve, close to I',, that
one can parametize by its projection on the z, plane which is a smooth
simple closed curve, that we denote by y.. In all the statements below,
¢ will have to be taken small enough, even when not explicitly mentioned.
Notice that (1,0)eTI,.

Along TI'y, z, and Z, match with holomorphic functions :

z, = ¢h(z;)
1 —zz, 11— zh(zy)

i, =
Z, z,

We have already seen in § 1 that this matching is crucial in the theory

of maximum modulus sets on the sphere.

Claim 1. — In any neighborhood of (1,0) the curve I', does not
bound an analytic disk from outside (or from inside) the unit ball.

Indeed such a disk (from outside) could be parametrized by z,, i.e.
by a map z, — (z,,2z,(z,)) defined, in a neighborhood of 1, on the
«right » side of y,. The antiholomorphic function z,(z;) defined on one
side of y, would then coincide along vy, with the holomorphic function
eh(z,) defined on the other side. According to Proposition 1, vy, would
therefore be real analytic at the point 1 (and coincide with the circle
g?|1—z,1*+|z,/*=1). Along v, €*|h(z,)|* = 1 — |z,|*. This would force

g?|h(z,)|*| to be real analytic, and since |h(z,)|* — |1—2z,|* vanishes to
Ye

infinite order at the point 1, one would have, in a neighborhood of 1:

lh(zy)| = |1—2z,| if z,;ey,. By Schwarz’s reflection principle, one sees

that this would imply h(z,) = (1—2z,)H(z,) where H is holomorphic in

some neighborhood of 1 and H(1) = 1. Therefore h(z,) = (1—z,), since

the difference vanishes to infinite order at 1, a contradiction as desired.

It has been seen in the proof of Corollary 2 that since I'; is not
real analytic at (1,0), and since along I',z, and z, match with
holomorphic functions defined in this ball, I, cannot bound a disk
from inside.

Claim 2. — For & small enough Iy is a maximum modulus set.
More precisely there exists F a smooth function on B,, which is
holomorphic on B, and satisfies |F| =1 on T, |F| <1 on B, — T,.
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Proof of Claim 2. — The holomorphic vector field

7= — gz;h(z,) _(3_+i
1 — ez,h(z,) 0z, 0z,

is tangent to the sphere precisely along I'.. For & small enough Z

defines a holomorphic foliation of the ball whose leaves will be the

level sets of F. We now proceed to the construction of F.

The curve I'; being parametrized by 7., by z,+ (z,,0(z,)), we can
attach a differentiable disk to I', by taking a smooth extension of 0 to
Q. the bounded component of C — vy,, say the harmonic extension, that
we still denote by 0. Then let D be the image of the map z, — (z,,0(z;))
defined on Q,, this is a differentiable disk attached to Q..

LEMMA 8. — There is a smooth (almost) complex structure J on D
and a smooth holomorphic retract 1 of B, onto D, endowed with the
complex structure J, so that TI(B,—T.) € D = D n B, (provided that ¢
is small enough).

a) Let us first not worry about holomorphicity and state a purely
« differentiable fact ». Set Z = X + iY, so

6+8 0 Y& 0 0

= — - + b _— T D + b
ox,  lox, on v, ox an
where
Bt v e2h) _ u+iv
1 — ez,h(z,) ’

We claim that there is a smooth foliation of a neighborhood of B,,
by two dimensional surfaces, so that if p is any point in B, then at
p, X and Y are tangent to the leaf of the foliation through p, and
this (connected) leaf has a unique point of intersection with D. We
denote this point of intersection by n(p). If pe B,\I',, n(p)e D, and
p m(p) is a smooth map.

To see this, extend X smoothly to some neighborhood of B,
and denote the extension by X. We can change variables

¥ . .
(X15 V15X, V2) — (X0, V4, X5, v,) so that in the new variables

Y:

Pl If € is small enough the change of variable is close to the
X2
identity, and W(B,) the image of this ball is still strictly convex. From
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the fact that [X,Y] = 0 we get that in the new coordinates,

Y=0,—+a 0 +a 0 + a 0
ox, : 8y1 s (3x’ ayz
where _
0o
=0 ji=1,...,4.
axlz b ,] b b

The a; are therefore functions of xj, y; and y;, and do not depend
on x; (since the insertion of W (B,) with any line is connected). By

subtracting o,-— from Y and changing variables in the (xi,y], ;)

a 7
space, one ﬁnally reaches the following situation :

There is a smooth vector field ¥ defined on some neighborhood of
— ~ 0 — ~
B, <with Y=Y- 0‘25; on Bz> so that the span of (X,Y) is the same

2
as the span of (X,Y) at every point of B,, and there is a change of
variable ¥ defined on some neighborhood U of B,
W (x5, Y2, X2,Y5) = (X1, Y1, %5, Y7)
so that: W(B,) is strictly convex, and in the variables (x7,y},x57,y5),
0 o 6
¥ = .

Y = )
0xy 6

As ¢ tends to 0 the neighborhood U does not shrink and ¥ is as close
as needed to the identity map. Then W (D) is bounded by the curve

Y(T,), defined in ¥(S,) by the fact that along this curve and

”
0x,

P are tangent to ¥(S,). The projection of W(I';) in the (x7,y7) plane
2
bounds a domain ®, which is the projection of ¥(B,). And ¥ (D) can
be parametrized by

0> (xll’:yl) = (xlyylaX"(x27y1) X"( 1,)’1)),

where X7, X; are smooth maps, close to 0. In the variables
(x7,y7,x5,y5) the map m is the map

(x7,¥1,x5,y5) = (X7, y7, X7 (xT,p7), X5 (x7,y7)),

and the leaves of the foliation are given by fixing (x7, y7).
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b) Now we are going to use the fact that Z is a holomorphic vector
field. It therefore defines holomorphic local foliation of the ball, and
in fact a global foliation as seen in a). The set of leaves of a
holomorphic foliation has a complex structure (which locally can be
identified with the complex structure on any holomorphic manifold
transverse to the leaves), which makes the mapping, which associates
to a point the leaf which contains it, holomorphic. By identifying a
leaf with its intersection with D, we have a complex structure J defined
on D. The complex structure J (« multiplication by i» in the tangent
space) can be described in the following way. If V is a vector tangent
to D at some pointp. Then J(V) = I«(iV) (the image under the
differential of IT at p of iV considered as a tangent vector
to C? at p). This ends the proof of the Lemma.

Now we finish the proof of Claim 2.

Consider a differentiable « open» disk D containing D, with an
(almost) complex structure J extending J (in one complex variable there
is no integrability condition). According to the uniformization theorem
(D,J) is biholomorphically equivalent to C or to the unit disk. At any
rate (D,J) is biholomorphically equivalent to a smooth bounded domain
in C, and the correspondence is smooth up to the boundary (i.e. on
D). Composing with a conformal map onto the unit disk, one gets a
smooth function f on D which is holomorphic on D with respect to
the complex structure J and satisfies |f| <1 on D, |f|=1 on
D — D =T,. Finally F = foll is the desired function.

Iv.2.

Recall that if a smooth curve in S, is a maximum modulus curve,
then the functions z, and Zz, must match with holomorphic functions.
We now construct an example of a smooth curve in S, along which z,
and z, do match with holomorphic functions, but which is not a €*
maximum modulus set. The explanation for this is that the local foliation
obtained as in IV.1 fails to have the required properties (the leaves
have too much « curvature »).

Let h be a non-zero holomorphic function defined on the unit disk
in C, so that h extends smoothly to the closed disk and vanishes to
infinite order at the point 1. Let I" = S, be the curve defined near (1,0)
by the equation z, = 2z, + h(z,). Along I', z, and z, do match with
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holomorphic functions defined in the ball near (1,0). For z, this is
clear, and one has

1 — 2,2, 1 =222~ z,h(z)
Z1 = = .

2 Z;

However, we have

Cramm. — If W is any neighborhood of (1,0), there is no function
F, $* on B, n W, holomorphic on B, n W so that |F| = 1 along T n W
and |F| <1 on B,n W.

Proof. — Assume, to get a contradiction, that there exists W and
F as above. On I' we would have

oF
0z, _ 7
oF 3,
oz,

Now we claim that if H is a €' function on B, n W, holomorphic on
B,nW and H is zero along I' then dH(1,0) = 0. It is clear that
oH . . . ;

5~(1,O) =0 since I' is tangent to the circle {(¢®,0)}. If one had
Zy

0H
0z,
by the implicit function theorem. Since along I', z; and z, match with
holomorphic functions, this would force I' to be real analytic (as seen
in the proof of Corollary 2), which is not the case since I" has contact
to infinite order with the circle {(¢®,0)}, but is not the circle.

(1,0) # 0, T" would bound an analytic disk from inside, near (1,0)

The conclusion is that since

oF

0z, 2,(22,+ h(z,))

oF 1-22—zpizy 5
0z,

we have
oF

0z, _ z2,2z,%h(z)
oF 1 — 222 — z,h(zy)
0z,

To(lzsl+1—2z]).
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For simplicity of the exposition, let us extend F to be ¥* on some
neighborhood of (1,0). Consider the germ of curve A = (A, A,) obtained
by integrating the differential equation :

_65
. _ [ 0z, _
i\~ eo ] ro=ao.
0z,

Then A is of class €%, A,(t) =t, A (¢) =1 + at> + o(t?). From the
differential equation one gets

2at + o(t) = — 2t + o(1).
Hence a = — 1. So A(t) = (1—1t*+o0(t*),t) which shows that for ¢ small,
t #0, we have |A(t)] < 1. The curve A (restricted to small ¢’s) is in

. . . d
the ball, where F is holomorphic. Then chain rule gives i (Folh)=0,

and so the function F is therefore constant along A, which shows that
there exists point p in B, nw at which |F(p)| = |F(1,0)] = 1. This
contradiction establishes the claim.

Note. — Since we quote the paper [16], the second author would
like to take this opportunity to correct a statement in [16].

Page 64, in Proposition 1, the hypothesis in 2° should be, as in 3°,
that gfi be bounded for j =1, ...,1, and not only for j = 1 as stated.

W]
q
H

The formula giving page 66 line 16, should be replaced by :

ot,
oG oG
q _ _a_gq — Z a a,
0s; ow; 5 Oty
o0,
with a; = 25 if j# k, and a; = — i + 22
S 0s;
By solving this system of [ equations in the unknown
0Gq 0Gq one gets :
atl 9 0 s vy att ’ g .

G, oG, 4G,
a, ;“f (asj 2%50,)"
99x,

and the ojs depend (smoothly) on the functions .
j
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~

. 0G
The terms 6sq have to be integrated by parts. The terms — are
j Wi
. . G 200G,
continuous up to the edge, since one has —% = — —2=1 (for
ow; ; ow;

j >1, this is straightforward, by differentiation of the integral
defining G,) .

The second author is extremely grateful to H. Koo, for pointing
out this mistake to him.
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