Sur une surface riemannienne compacte analytique réelle, nous estimons l’aire du domaine sur lequel une fonction propre du laplacien est positive.
Sur une variété riemannienne compacte de dimension , nous estimons le rapport entre le minimum et le maximum d’une fonction propre du laplacien.
On a two-dimensional compact real analytic Riemannian manifold we estimate the volume of the set on which the eigenfunction of the Laplace-Beltrami operator is positive.
On an -dimensional compact smooth Riemannian manifold, we estimate the relation between supremum and infimum of an eigenfunction of the Laplace operator.
@article{AIF_1991__41_1_259_0, author = {Nadirashvili, Nikolai S.}, title = {Metric properties of eigenfunctions of the {Laplace} operator on manifolds}, journal = {Annales de l'Institut Fourier}, pages = {259--265}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {41}, number = {1}, year = {1991}, doi = {10.5802/aif.1256}, mrnumber = {92g:58130}, zbl = {0726.58050}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1256/} }
TY - JOUR AU - Nadirashvili, Nikolai S. TI - Metric properties of eigenfunctions of the Laplace operator on manifolds JO - Annales de l'Institut Fourier PY - 1991 SP - 259 EP - 265 VL - 41 IS - 1 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1256/ DO - 10.5802/aif.1256 LA - en ID - AIF_1991__41_1_259_0 ER -
%0 Journal Article %A Nadirashvili, Nikolai S. %T Metric properties of eigenfunctions of the Laplace operator on manifolds %J Annales de l'Institut Fourier %D 1991 %P 259-265 %V 41 %N 1 %I Institut Fourier %C Grenoble %U https://aif.centre-mersenne.org/articles/10.5802/aif.1256/ %R 10.5802/aif.1256 %G en %F AIF_1991__41_1_259_0
Nadirashvili, Nikolai S. Metric properties of eigenfunctions of the Laplace operator on manifolds. Annales de l'Institut Fourier, Tome 41 (1991) no. 1, pp. 259-265. doi : 10.5802/aif.1256. https://aif.centre-mersenne.org/articles/10.5802/aif.1256/
[1] Problèmes aux limites non homogènes et application, vol. 1, Dunod, Paris, 1968. | Zbl
, ,[2] Partial differential equations, Providence, R.I, 1974.
, , ,[3] Uber Knoten von Eigenfunnktionen des Laplace-Beltrami Operators, Math. Z., 158 (1978), 15-21. | EuDML | Zbl
,[4] Nodal sets of eigenfunctions on Riemannian manifolds, Invent. Math., 93 (1988), 161-183. | EuDML | MR | Zbl
, ,[5] Elliptic partial differential equations of second order, Second Edition, Springer, 1983. | MR | Zbl
, ,Cité par Sources :