Nous démontrons des “inégalités des bons " pour l’intégale d’aire, la fonction maximale non-tangentielle, et la fonction maximale associée à la densité de l’intégrale d’aire. Nos résultats répondent à une question posée par R. F. Gundy. De plus nous démontrons un théorème du genre loi du logarithme itéré pour des fonctions harmoniques, semblable à celui de Kesten pour la suite des sommes partielles de variables indépendantes. Nos théorèmes 1 et 2 sont énoncés pour un domaine dont la frontière est lipschitzienne. Mais, ils sont tout aussi nouveaux pour .
We prove good- inequalities for the area integral, the nontangential maximal function, and the maximal density of the area integral. This answers a question raised by R. F. Gundy. We also prove a Kesten type law of the iterated logarithm for harmonic functions. Our Theorems 1 and 2 are for Lipschitz domains. However, all our results are new even in the case of .
@article{AIF_1991__41_1_137_0, author = {Banuelos, R. and Moore, C. N.}, title = {Distribution function inequalities for the density of the area integral}, journal = {Annales de l'Institut Fourier}, pages = {137--171}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {41}, number = {1}, year = {1991}, doi = {10.5802/aif.1252}, zbl = {0727.42016}, mrnumber = {92k:42025}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1252/} }
TY - JOUR AU - Banuelos, R. AU - Moore, C. N. TI - Distribution function inequalities for the density of the area integral JO - Annales de l'Institut Fourier PY - 1991 SP - 137 EP - 171 VL - 41 IS - 1 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1252/ DO - 10.5802/aif.1252 LA - en ID - AIF_1991__41_1_137_0 ER -
%0 Journal Article %A Banuelos, R. %A Moore, C. N. %T Distribution function inequalities for the density of the area integral %J Annales de l'Institut Fourier %D 1991 %P 137-171 %V 41 %N 1 %I Institut Fourier %C Grenoble %U https://aif.centre-mersenne.org/articles/10.5802/aif.1252/ %R 10.5802/aif.1252 %G en %F AIF_1991__41_1_137_0
Banuelos, R.; Moore, C. N. Distribution function inequalities for the density of the area integral. Annales de l'Institut Fourier, Tome 41 (1991) no. 1, pp. 137-171. doi : 10.5802/aif.1252. https://aif.centre-mersenne.org/articles/10.5802/aif.1252/
[1] An analogue of Kolmogorov's law of the iterated logarithm for harmonic functions, Duke Math. J., 57 (1988), 37-68. | MR | Zbl
, and ,[2] Sharp estimates for the nontangential maximal function and the Lusin area function in Lipschitz domains, Trans. Amer. Math. Soc., 312 (1989) 641-662. | MR | Zbl
and ,[3] Laws of the iterated logarithm, sharp good-λ inequalities and Lp estimates for caloric and harmonic functions, Indiana Univ. Math. J., 38 (1989), 315-344. | Zbl
and ,[4] (Semi) Martingale inequalities and local times, A. Wahrch. Verw. Gebiete, 55 (1981), 237-354. | MR | Zbl
and ,[5] Semi-martingale inequalities via the Garsia-Rodemich-Rumsey Lemma, and applications to local times, J. Funct. Anal., 49,2 (1989), 198-229. | MR | Zbl
and ,[6] Séminaire de Probabilités XXI, Lecture Notes in Math., Springer-Verlag, New York, 1247 (1987). | Numdam | Zbl
,[7] Densité de l'intégrale d'aire dans Rn+1+ et limites non tangentielles, Invent. Math., 93 (1988), 297-308. | EuDML | MR | Zbl
,[8] Classe L log L et densité de l'intégrale d'aire dans Rn+1+, Ann. of Math., 128 (1988), 603-618. | MR | Zbl
and ,[9] Distribution function inequalities for the area integral, Studia Math., 44 (1972), 527-544. | EuDML | MR | Zbl
and ,[10] Some weighted norm inequalities involving the Schrödinger operators, Comment. Math. Helv., 60 (1985), 217-246. | EuDML | MR | Zbl
, and ,[11] Weighted norm inequalities for the Lusin area integral and nontangential maximal functions for harmonic functions in Lipschitz domains, Studia Math., 47 (1980), 297-314. | EuDML | MR | Zbl
,[12] On the Barlow-Yor inequalities for local time, Séminaire de Probabilitiés XXI, Lecture Notes in Math., Springer-Verlag, New York, 1247 (1987). | Numdam | MR | Zbl
,[13] Classical Potential Theory and Its Probabilistic Counterpart, Springer-Verlag, New York/Berlin, 1984. | MR | Zbl
,[14] The density of the area integral, Conference on Harmonic Analysis in Honor of A. Zygmund, Beckner, W., Calderón, A P., Fefferman, R., and Jones, P., editors, Wadsworth, Belmont, California, 1983. | MR
,[15] Some topics in probability and analysis, BMS, #70 (1989). | MR | Zbl
,[16] The density of the area integral in Rn+1+, Ann. Inst. Fourier (Grenoble), 35,1 (1985), 215-224. | EuDML | Numdam | MR | Zbl
and ,[17] Stochastic differential equations and diffusion processes, North Holland Kodansha, 1981. | MR | Zbl
and ,[18] Boundary value problems on Lipschitz domains, MAA Studies in Math., 23 (1982), 1-68. | MR | Zbl
and ,[19] An iterated law for local time, Duke Math. J., 32 (1965), 447-456. | MR | Zbl
,[20] Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, New Jersey, 1970. | MR | Zbl
,[21] Bounded mean oscillation with Orlicz norms and duality of Hardy spaces, Indiana Univ. Math. J., 28 (1979), 511-544. | MR | Zbl
,Cité par Sources :