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STABILITY OF THE INVERSE PROBLEM
IN POTENTIAL SCATTERING AT FIXED ENERGY

by Plamen STEFANOV

1. Introduction.

Let q(x) be a potential supported in the ball Bp = {x; |x|^p} and
consider the related quantum-mechanical scattering amplitude Ag(o^,Q,k).
The inverse problem under consideration is to recover the potential
q(x) if Aq(w,Q,k) is known at a fixed energy k > 0. The uniqueness of
this inverse problem has been established by R. G. Novikov [No] (see
also [SU4], [R]). Novikov's proof (as well as the other approaches)
reduces the problem to the uniqueness of the inversion Ag-^-^,
where \q-^ is the Dirichlet-to-Neumann map on SR = 8Bp (see sect. 3)
for some fixed R > p. The latter problem has been investigated in a
series of papers by Sylvester, Uhlmann, Nachman [SU1]-[SU4], [NSU],
[Nal] (see also [No]).

The aim of the present work is to derive a stability estimate related
to the map y4g((D,9,fe) -> ^(fe-fixed). More precisely, we find a special
norm of Aq with respect to which that map is continuous. In order to
define it, given a function A (©,9), G)e5'2 , Q e S 2 let us expand A(w,Q)
in the spherical harmonics Y^ :

n! oo n2

(1.1) .4(0), 0)= I E E E a^^Y^((o)Y^(Q)
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(see section 2 for more details). Then we set

ll . l, - J V /2n, + ly711^1 /2n, + ly^252,
11-411^ - {2^-^^ ^R~y la^^"^^/z^^LlY"2^52 ^

R.5i,S2 )^l .,„ j t _ , „ / l^mi/^ \ -

Obviously, || • ||^,s^ is a norm which depends also on k (assumed to
be fixed). If Aq is a scattering amplitude associated with some q with
supp^c:2?p, then |[ |̂|̂  ̂  ,^ <oo for any ^)p. On the other hand,
even for smooth^, Mlli?,,^ may be infinite. This norm admits also
the following equivalent interpretation. Let A^ be the Laplace-Beltrami
operator on S 2 . Denote B= ( l—A^a)^ 2 . Since for the eigenvalues of
B we have (n(n+ 1)+1)1 '2 = n + 1/2 + 0(n~1), \\A\\^^ is equivalent
to the following norm

/?/? X^Q)4-5!-1/2 / - ) D \5e+S2-l/2
{ZJJ^\ ( LD^ \ A

\ekR) \ekR) L^S^xL^S2 )

Note that the expressions in the brackets are well-defined by means of
the spectral theorem.

Our main result is the following.

THEOREM. 1.1. — Let supp^o c: ^p? ^ = ^ an^ fix k > 0. Then for
any R > p we have :

a) If qo € H8^3), 5 > 3/2, then there exists a neighborhood of qo of
the kind^ (9 = {qeH^R3); suppq c:J5^, \\q-qo\\Hs<E}, such that if
q^ e ( 9 , q^eO, then

H^-^IL- ^ C(t)(||^(-,-,k)-^(.,-,k)||^3/2,-i/2),

where (|)(Q = (-InQ"5, 0 < 8 < 1 for t > 0 sufficiently small.

b) If qoeL^m3) r\ H^R3), s > 0, ^?n rAm? ^as^s a neighborhood
of qo of the kind {q e L °° (R 3 ) n H 5 (R 3 ) ; supp q c: ̂  ,
l l ^ — ^ o l l L O O + l l ^ — ^ o l l ^ s < J ^ } ? •SMC^ that for all q^, q^from that neighborhood
we have

ll^l-^IL2 < C(l)(||^(-,.,k)-^(-,.,k)||^,3/2,-l/2).

Our approach is inspired by Nachman's constructive method [Na2]
of reconstructing q(x) from the scattering amplitude Aq at a fixed
k > 0, and by the paper of Alessandrini [A]. A brief description of
Nachman's method is the following. Given ^(co,9,k) at a fixed k we
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first recover the Green's function Gq(x,y,k) for \x\ > p, \y\ > p (see
Proposition 2.2). To this end we expand Aq and Gq in special functions
and use the fact that the leading term of the asymptotic of Gy(x,y,k)

as [ x l - ^ o o , \y\-^oo is [e^ ^'/(47c|x||^|)] ̂  (—. - ̂ k} (see

Proposition 2.1). Next, since Gq(x,y,k) is known for \x\ == R, \y\ = R,
R > p , we reconstruct Ag-^s by means of explicit formulae (see (3.1)).
And finally, we can use the results of [Nal] to perform the inversion
\^_^->q. In order to prove Theorem 1.1, we first get a stability
estimate related to the map Aq-^Aq-^. Next, following essentially [A]
we get a stability estimate corresponding to the map A^-^ -> q.

Acknowledgments. — The author would like to thank Prof. A. Nachman
for explaining him the method in [Na2] and for pointing him out
Ref. [L] which is the essential part of the proof of Lemma 3.2.

2. Properties of the Green's function.

Throughout this section we assume k>0 fixed and ^eL°°((R3) ,
suppg c= B p , q = q. Recall that the Green's functions G^(x,y,k) can
be defined as the kernels of (-A+^-^TiO)-1 in ^(Lj.L'-g), 5 > 1/2
(see e.g. [Nal]) or, equivalently, as the solution of the problem

(-^q(x)-k2)G^x,y,k) = 5(x-^),

satisfying the outgoing (incoming) Sommerfeld condition at infinity. The
first definition implies G+(x,y,k) = G-(y,x,k), while the second one
yields G+(x,y,k) == G-(x,y,k). Therefore, G±(x,y,k) = G±(y,x,k). Since
in what follows we shall deal only with the outgoing Green's function G+
we shall drop the sign « + ». To emphasize the dependence on q we
shall use the notation Gq instead of G+ . It is known, that Gq(x,y,k)
is a function that satisfies the following inequality [S]

c|x-};|-1 ^ Gq(x,y,k) <^c\x-y\-\ xeU\ yeR\

which, in particular, implies GqC L^c^x ̂ ). Let
gik\x-y\

Go(x,y,k) =uv ? '5 / 4n\x-y\

be the outgoing Green's function corresponding to q = 0. Since
(^^k2)(Gq-G,)=(^y^k2)(Gq-GQ)=Q for \x\ > p, \y\ > p, it
follows that Gq - Go is smooth for such x, y .
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The fallowing asymptotic is known and we include its proof only
for the sake of completeness.

PROPOSITION 2.1. - We have

l ik\x\ ik\y\ / \ .
(C.-<,)(̂ ) . ̂ .̂( ,̂ -^Y ̂ (̂ ),

\vhere B(x,y,k) ->0, as \x\ -> oo , \y\ -> oo .

Proof. - It is known that

(2.1) Go^)^0'^-^
4n\x-y\

_exp(ik(\x\-y.x/\x\))
~————4n\x—————+o(w )'

as |x| -^ oo, and the convergence is uniform in y e B p . Combining (2.1)
with the formula

(2.2) (G,-G,)(x,y,k)= - ^G,(x,z,k)q(z)G,(z,y,k)dz,

we get
gik\x\ .

(2.3) G,(x,y,k)=^v(y,-^k)+0(\x\-2), as |x | -oo .

Here v(x,o),k) is the generalized^ eigenfunction, which is the solution of
the Lippmann-Schwinger equation

u(x,o),fe) = exp(ffex-G)) - Go(x,y,k)q(y)v(y^,k)dy.

The convergence in (2.3) is uniform in y e B p . Substituting (2.1) and
(2.3) into the formula

(2.4) (G,-G,)(x,y,k)= - \G,(x,z,k)q(z)G,(z,y,k)dz,

we get
^ik\x\ pik\y\

(G,-G,)(x,y,k)= --——-——
4n [ x | 4?t | y |

x ( \exp(-ikz'y/\y\)q(z)v(z,--'c-,k)dz+B(x,y,k)),
\ J 1 - ^ 1 y
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where B has the needed properties. Applying the formula

^,(o),9,fe) == - — ̂ -^(^(xWdx

and using the equality 4,((o,9,fe) = ^,(-9, -(o,fe), we get the required
result.

Next we are going to expand Gg(x,y,k) in special functions. Recall
that the spherical harmonics are defined as follows :

ym^_[^l)(n- m|) IT2

Yn ((D) ~ L 47r(n+|m|)! J pn^(cos °̂cos aV^,

fl — t2}^2 /-[n
n=0 , l , . . . ,m= -n, .. . ,n, where P,.̂ ) = v ^^ ^(^_^^

and co = (sin a cos P, sin a sin P, cos a). It is well-known that
{Y^ ; n=0,l , . . . ,w= -n, . . . ,n} form an orthonormal base in L\S2)
and if A^ is the Laplace-Beltrami operator on 5'2, then

(2.5) - A^V^= n(n+l)y^.

/ \1 /2

Let h^\r) = ̂ j H^^(r) be the spherical Hankel function with

asymptotic

(2.6) /^)(r)=(-,y+l^-r+ Q(,-2)^ asr ^ oo.

Now, let us expand the scattering amplitude Ag(w,Q,k) in spherical
harmonics

00 "1 00 n2

A,(w,Q,k)= Z E E S a,^^ Y^ (o)) Y^ (9)
^1=0 w ^ = — n ^ "z'3'^ m2= — r a2

where

(2.7) a^^=| ] ^(co,9,fe)r^(o)) 7^ (9) d^d6.
Js2j52 2

The main result in this section is the following.
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PROPOSITION. 2.2. — For \x\ > p , \y\ > p we have the expansion

oo "1 oo "2

(2.8) G,(x,y,k) - G,(x,y,k) = E E Z E Jn^n^
n-^=0 m-^=—n^ n^=0 m^=—n<^

x^(fe|x|)r^^)^(fe|^)y^^,

k2

where y^^ = - ̂ (- I)"2 f11'^2 ̂ m^m^.

77^ 5^r^5 converges uniformy and absolutely for \x\ ̂  R, \y\ ̂  R
for any R > p anrf can h^ differentiated termwise.

Before giving the proof, we note that this proposition enables us to
find the values of Gg(x,y,k) for |x| > p, \y\ > p, if Aq is known for
all co, 9 and k > 0 fixed (see also [Na2]).

Proof. - We use the formula [EMOT]

(2.9) G,(x,y,k) = ^ ^nmWh^(k\x\) Y^ ( x ) , \x\ > \ y \ ,
n,m \\x /

/ y\
where ^nm = ikjn(k\y\) Y^ ( — | and^(r) is the spherical Bessel function.

From (2.2) and (2.4) we get Gq - Go = /i + 1^, where

/i = - G^x,z,k)q(z)Go(z,y,k)dz,

^2= ^Go(x,z^k)q(z^Gg(z^z^k)q(z2)Go(z^y,k)dz^dz^

Taking into account (2.9), we get for \x\ > p, \y\ > p

A = Soc^^^(felxl) ̂ (—^^(fcl^) ̂ f-V
Vl-^ l / \ 1 ^ 1 /

f
where oc^^^ = - ^n,m,(z,k)q(z)^^^(z,k) d z . Here and below we
use the sign ^ to denote the sum in (2.8). The coefficients ^n^m^m^
admit the following estimate

(2.10) lOC^^I ^H^ll^ ||^JL2(Bp)11^2ll^(V ,
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Similarly, for |x| > p, |j;| > p

h = E^^(felxl) y^('-)^)(fe|^|) y;̂ ),
where ^l7 VW

P^m^m^ = J J ^n,m,(z,,k)q(z,)G,(z,,z^k)q(z^^(z,,k)dz,dz,.

Since q(z,)G,(z,,z,,k)q(z,) eZ^R6), we get

(2.11) IP^^I ^ C|[< |̂|̂  ||^JL2^).

Therefore, G^ - G'o admits the required expansion with some coefficients
7n,m,n^, and relations (2.10), (2.11) imply the same estimate for
vI Tt-^TTl-^TtyTTIn '

(2.12) ly,^^| < C\\S^\\^ \\S^\\^.

Let us estimate ||̂ |̂|. Using Lemma Al, we get

ll^«lli2(Bp) < fe2 f {j^y^^Y^-^^dy
Jflp Vlj'l/

= ^J JJ^WI'I^O)!^2^^ = fe2 P \j^kr)\^ dr

c ̂ ^\n ^ c-^^f ̂  r3
"^ i^n+l^ "n^n+^^l.TTj •

Therefore, for n ^ 1 we get
/ » . \n+3 /2

(2.13) ||̂ .||̂  < c(̂ ) .

A straightforward calculation shows that (2.12) remains true for n = 0.
Combining (2.12) and (2.13), we arrive at the estimate

(214) |y / ekp Y^12 ( ekp Y^2

' ) ^n^m^c[2n,+i) (̂ TT; •

In order to prove that the series (2.8) is uniformly and absolutely
convergent, let us estimate each term. Recall the estimate

,y;(«)l̂ y
\ 4n }
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(see e.g. Lemma 13, [M]). Combining it with Lemma A2 and (2.14), we
see that the right hand side of (2.8) can be estimated termwise by the
series

00 / eko Y^3'2 / pko \n2+3l2

c^.^ (2$,) ".^0"W)"
/ --» \ "1 / '"» \ nl)I 2ni \ 1 / 2^2 \

x (2+^) [^ekR) '
provided \x\ ^ R, \y\ ^ R. The series above does not depend on x , y
and if R > p , then it converges. This proves the last assertion of the
proposition.

Now, in order to complete the proof, take the limit | x \ -> oo,
\y\ -» oo in (2.8). Then, using asymptotic (2.6), Proposition 2.1, and the
equality F^(-9) = (- l^y^G), we get the desired relation between
^n^m^n^m^ aUQ ^n^m^n^m^ '

3. Stability of the inversion Aq -> A 9 -^2 .

Let ^4(co,0) be a smooth function on ^^x S2 (not necessarily a
scattering amplitude). Let us expand A in spherical harmonics as in
(1.1) and let a^m^m^ be the corresponding coefficients (see (2.7)). We
then define the following map (k>0 is fixed).

k2

^T: ^(0,9) ^ ^m^2 ^ ~ 4^ K-l)"2^^2 a^n,m,

x h^(k\x\) Y^t^^Wy^ Y^ ( y ) = :F(x,^).xwy \\y\/
Now, suppose that Aq is a scattenfaag aanplitude at a fixed k corresponding
to some q with supp^ c= Bp. Then a^^^^^ satisfy the estimate (2.14).
Therefore, in that case F = ^V'Aq is a well-defined function for |x| > p,
\y\> p , which coincides with (Gg-G'oK-,- ,^) . Next, we shall prove
that in fact the map J^ is continuous in an appropriate topology.
Recall the norm IHI^s^ defined in the Introduction. Estimate (2.14)
(which is satisfied also by a^m^rn^ shows that ||^(-,-,k)||^^ < oo
for any R > p , Si, Sg, k > 0, provided that Aq is a scattering amplitude
corresponding to a potential supported in a ball with a radius p. Below
we denote Sn = SBp^ = {x; |x|=7?}. We have the following.
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PROPOSITION. 3.1. - For any R > 0 and for all s,, s, we have

ll^^(-,-)ll^l(^)xH.2(Sfi) ̂  Cs,^ \\.A\\R.s,,s,-

Proof. - Recall that B=(l-^yi\ thus by (2.5) BY" =
(n^n+l)11^. Therefore

B^B^A(R^RQ) = - ̂ E(-l)n^•+'•^^,„^(n?+«,+l)^

x h^(kR) Y^ (o))(^+n,+ iy2/2 h^(kR) Y^ (6).

Hence, applying lemma A2, we get

\B^B^^~A(Rw,RQ)\2 d(o dQ
Js2js2

k2

^E law^l^+^+l)'1 l/i^feTOI^nj+^+l)^ \h^(kR)\2

/ ?ii \2^1 / '-) \ 2no
^C^ a^^^^+n.+iyi 2+—— (^+n,+ly2(2+-2 n i)

\ ^^^/ \ ekR)
<CY\a i.^+lY-^^^^l^—
" "^'^i^l [^kiT) [~eMR7)

which completes the proof.

Let us recall the Dirichlet to Neumann map A^2 (see [SU1]-[SU4],
[NSU]). Let ^eL 0 0 , supp^f c= ̂  and assume that k2 is not a Dirichlet
eigenvalue of - A + q in B^. Let u solve the problem

f- AM + ^M = fe2^,
1" .. = /•

Then we set Ag-^2/: = ^M^, 3^ being the derivative with respect to
the outer normal to SR. According to [Nal], \_^: T^^) -^
H112^^) is a bounded operator. Below we define the operator norm in
^(^i(^), H5^)) by 11.11^^. Note that it is different from the
norm II-H^,^ given in Introduction.

Since we deal with a fixed k > 0 and with q in a neighborhood of
a fixed qo, the following question arises. Given k > 0, qeL^ with
supp^ c: ^p, can we choose R > p smch that k2 is not a Dirichlet
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eigenvalue of — A + q in B^ ? The answer is positive. Indeed, let
^i(R) ^ ^GR) ^ • • • be the Dirichlet eigenvalues of — A + q in B^,
R > p , counted according to their multiplicities. It is well-known that
^k(R) are non-increasing functions of R (see e.g. [RS], § XIII.15).
However, in fact they are strictly decreasing, according to [L]. This fact
leads us immediately to the following.

LEMMA 3.2. — The set of all R > p , such that k2 is a Dirichlet
eigenvalue of — A + q in B^, is discrete.

Proof. — Suppose the contrary and let R^ < R^ < . . . be an infinite
sequence bounded above by some Ro such that k2 = ̂  (R^) for some
rim' Since ^n(R) is a strictly decreasing function of R and a non-
decreasing function of n , we get n^ < n^ < . . . n^ < . . . -> oo . Thus
k2 = 'k^(R^) > ^n^{Ro) -> oo, as m -> oo, which leads to a contradic-
tion. The lemma is proved.

The following proposition is the main result of this section.

PROPOSITION 3.3. — Let qoeL^, supp qo c= 2?p. Assume that k2 > 0
is not a Dirichlet eigenvalue of — A and — A -1- ^o m ^R •> R> P •
Then there exists a neighborhood of qo of the kind
( 9 ' = {q e L°° ; supp q^B^, \\q~q\\LOO<E'} and a constant C > 0, such
that for all ^ i , ^2 belonging to that neighborhood we have

1|A^-A:2-A^-^2||3^2 ^ C||.4^(-,-,fe) - ^^(•,- ,fe) | |^,3/2,-l /2.

Proof. - Let ̂  : j^2^) -> /^'C^) be the operator

^JM- f G,(x^k)f(y)dS,.
J S R

^Sq^ is a bounded invertible operator [Nal]. Furthermore, as proved in
[Nal],

(3.1) A,- ,2-A- ,2=^-^ .

Let us denote the Dirichlet Laplacian in B^ by A£). We can show that
the map L°°(^) 9 q -> ( — A ^ + ^ — f e 2 ) " 1 is a continuous one if
^ e ( ^ / = {g e L^ ; supp ^ c= 2?^ | [^—qol | ^oo-^J^} and E ' is sufficiently
small. Thus fe2 is not a Dirichlet eigenvalue of — A + q in B^ and
A^-^2 is well-defined for q e d ) ' . Moreover 11^^113/2,1/2^^,



INVERSE SCATTERING PROBLEM 877

l |Ag-A2 | l3 /2 , i /2 ^ C for q e ( 9 ' . Therefore, if q^ and q^ lie in ( 9 ' we have
according to (3.1)

A.,-.. - A^,2 = ̂ (^- ^,.)^.
Hence
1|A^-^2—A^_^2| |3/2^/2 ^ l l ^ ^ , A ; l l 3 / 2 , l / 2 I I ^ q^, k ~ 'f q^,k\\ 1/2,3/2 I I ' ' g ^ l l 3/2,1/2

^ c I I ^q^, A- — ''^•^ 1/2 '3/2 *

In order to estimate the last term we consider

[B3'2^^ - ̂ ,,)/] W = B^2 [ ^ (G^ - G^ (T?(O, RQ, k)f(RQ) R2 dQ

= f [B^B, ̂ ^ - G^ CRO), 7?9, fc)] ̂ ^/(^O) T?2 dQ.

Here 6'g.Qc, ^, k) is the Green's function corresponding to q^ i = 1,2.
Thus we get

11^ - ^.Jll/2,3/2 ^ C\\(G^ - G^(R^R^k)\\^12^H-^(S^

^ C/||(^-^)(•,.,fe)||^3/2,-l/2.

In the last step we applied Proposition 3.1.

4. Stability of the inversion Ag-^2 -> q.

In this section we prove that q depends continuously on \-k2 in
an appropriate sense. We note that the theorem below has been obtained
by Alessandrini [A] for potentials q of the kind q = Ay^/y^2,
y > const. > 0. A slight modification of the proof in [A] yields the
desired estimate in a neighborhood of those q, for which k2 is not a
Dirichlet eigenvalue of — A + q in BR.

THEOREM 4.1. — Let qQ e H3(R3), s > 3/2, supp qo c= By and suppose
that k2 > 0 is not a Dirichlet eigenvalue of — A + qo in B^ for some
R > p . Then there exists a neighborhood of q^ of the kind
(P = [q e^(IR3) ; supp q c= BR, \\q - qo\\fjs < E}, such that if
^i ^ <^» ^2 ^ <^? then

11^1 - ^HL^ ^ C(f)( | |A^-fc2 - A^-,,2||3/2,i/2),

"where ^ is the same function as in Theorem 1.1.
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If we assume the weaker condition qoe ^(R3) n H^U3), with some
5 > 0, then there exists a neighborhood of qo of the kind
{q eL°°(R3) n H^R3) ; supp q c B^ \\q - q,\\^ + \\q - q,\\^ < E},
such that for all q^, q^ from that neighborhood we have

\\qi ~ <?2l lz .2 ^ C(t)(||A^-^2 - A^-fc2| |3/2,i /2),

Proof. - We follow essentially [A], Lemma 2. Given geL°°, we set
q(x) = q(x) — k2 for (x) ^ p, q(x) = 0 for |x| ^ p. According to
[NSU], Lemma 2.2, there exists So > 0, such that if \\q\\^ < £ o l ^ l ,
supp q <=. 2?p, then there is a unique solution to the equation
(- A + q)u = 0 in R3 of the form u(x, Q = ^'\\ + \|/(x, Q), where
;;•(; =0, ^ e C 3 and

(4.1) 1 |V | / ( - ,01 |L2(B^)^ ,^ I I^ I IL2 .

Let ^' be as in Proposition 3.3. As mentioned above if E ' > 0 is
sufficiently small \q-k2 is well-defined for arbitrary q e ( 9 ' . Let q ^ ^ O ' ,
^2 e ̂ ' and denote by M,(x, 0 the solution of the kind described above
related to q^ i = 1, 2.

Set Co = 21/28o'1 sup { | | <?|Loo, qe (9'} and assume \p\ > Co. Put

^i = - \P - (̂ r| + y, ^ = - \P + (̂ r| + ^),

where r > 0, p-r| = p^ = T[^= 0, |T|| = 1, |^|2 = r2 + Ipl2^. Note
that |^,|2 = 2 Re i;,|2 = 2(r2 + |p|V4), ^••^ == 0,; = 1, 2. The inequality
| p| > Co guarantees that M,(x, ^) are well-defined. According to [A], we
have

tei - ^2) W ^i(x, ̂ i) MS^, ^2) ̂
JB^

Mi(x, ̂ )(A^-^2 - A^-^2) M2(x, ^2) ̂ •
Js^

Note that Uj(x, ̂ ), 7 = 1, 2 are harmonic functions in a neighborhood
of SR, hence the right hand side of the equality above is well-defined.
We get

f (ql-q2)(x)e-ip•xdx=^ u,(x^)(\^,2- \^)u,(x^)dS^
JBR J S R

- f tel-^)(x)^-^•'?l(x,^)+v|/2(x^2)+^(x,^)v|/2(x,^)]^.JBR
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Thus, setting q: = q^ - q^ and using (4.1), we obtain

\q(p)\ ^ C||Mi(-,^i)| |^-1/2^)|| ^(•,^2)11^3/2^)
X ||A^,2 - A^2||^,i/2 + C(|^|-1 + |̂ r + l^r1!^!"1).

Here and in what follows we denote by C various constants depending
only on (9\ which may vary from line to line. Next, since
(- A^ + ^2)^2 = 0, we get

II ̂ (•^2)11^3/2(5^ ^ C\\U^,^)\\H\B^ ^ C\\U^,^)\\L\B^

^Cexp(27?|Re^l)( l + l^l"1).
Similarly,

ll^(-^i)llH-i/^)<C||^(.,^)| |H3/2^^Cexp(27?|Re^|)(l+|^[-1).

Taking into account that _ ( | p | + r) < |Re^| = |^[ ^ [p | + r, we get
0

for |p [ > Co

(4.2) \q(p)\ < C^'^^^X + r-1).

Here and in what follows we denote for simplicity

^ = IIA^-^2 - Ag^-fc2 | |3 /2 , i /2 .

Recall that (4.2) holds for any q^ e ( 9 ' , q^ e 0' and the constant C
depends only on (9\ but not on ^i, ^2? reU, \p\ > Co. In order to
obtain a same kind of estimate for \p\ < Co, we apply the following
lemma (see [A], Lemma 3).

LEMMA 4.2. — There exists a e (0, 1), c > 0, such that for any
holomorphic function F(z) over C3, we have

( Vmax|F(z)| ^ C max |F(z)| (max \F(z)\Y~\
I z l ^ l \1< |2 |^2 I iz |^4

v Im2=0 /

Since q is a holomorphic function over C3, applying Lemma 4.2
together with (4.2), we get

max \q(p)\ ^ C( max \q(p)\T ^ C(e^r+2C^K + r-1)01.
|P|<CO CQ^|j9|^2Co
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Here we have used the fact \q(p)\ remains bounded if q ^ O ' , peC3 ,
| p| ^ 4co. Since 0 < a < 1, it is easy to show that the following
inequality (a + bf ^ a" + ft" holds for a > 0, b > 0, thus
(4.3) max \q(p)\ < C(e'R(r+2co)'kcl + r-").

ipi<co

Combining (4.2) and (4.3) together with the fact that \\\-^\\ 312,112
remains bounded when q runs over 0\ we get

(4.4) \q(p)\ < C{exp [4R (max (\p\, 2co) + r)] ̂  + r-"}
^ C(e'R(r+}p{)'ka + r-")

for any p e R3 with a constant C depending only on ( 9 ' . Now assume
qeH\ 5 = 3 / 2 + 2 r | , ^ ^ 0. Setting <p> = (1 + Ipl2)^2 , we have
q <P^ = [q <P>5] ̂ r^2"11 e -L1 and moreover \\q (p^\\,i ^ C\\q\\^.
Since ||/|Loo ^ C'll/H^s, we have ^: ={^e^(r ) ; supp^c:^,
11^ - ^oIlH8 < ^ = ^VC'} c ^. Therefore for any ^ > 0 and qe (9, we
get

(4.5) [ \q(p) | dp ^ n-11 \(pr\q(p)\ dp < C^ .
J\P\>Vi J

From (4.4) and (4.5) we obtain for r >0, [i > 0

(4.6) \\q\\^ ^ C\\q\\^ ̂  C^^ ̂  + ̂ r-" + H-^),

where q = q^ - q^, qi e (9, q^eO, c= 4R + 1, C = C(^). Putting
[i == r"^, we get

II^ILoo ^ C(exp[c(r + r^6)]^ + r-^2 + r-"^6).

Set r = - — l n ^ . For X sufficiently small we have r > 1. Then4c
r^6 < r and

[I^ILoo ^ C^2 + (- In^)-^2 + (- In^)-^6).

Applying the inequality 'k < (—InX,)" 1 , (0<^<1), we finally get for
K > 0 sufficiently small

\\q\\L^ ^ C(-lnX)-6 , 0 < 8 < 1.

This completes the proof of the first part of Theorem 4.1. Now, to
prove (b), suppose that qe L°° n H\ s > 0. Then similarly to (4.5), we
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can easily prove that

f \q(p)\2 dp < C[i-\ n = 2 5 > 0 ,
J|p|>n

for all q e 6, ^ being a neighborhood of the kind given in (b). From
(4.3) and the above estimate we see that \\q\\L2 (and therefore H ^ j l ^ z )
admits an estimate similar to (4.6). Now, repeating the arguments
following (4.6), we complete the proof of Theorem 4.1.

Now we are ready to prove the main result of the paper. Let
qoeH^R3), s > 3/2 (qoeL^nH8, s>0), supp qo <= B^ and k > 0 is
fixed. Fix R > p. By Lemma 3.2, there exists Ro > R such that k2 is
not a Dirichlet eigenvalue of — A + qo, — A in B^. Since (|) is an
increasing function and for sufficiently small t > 0 we have
(|)(CO ^ C'<|)(0, we can apply Proposition 3.3 and Proposition 4.1 to
get the estimates of Theorem 1.1 with Ro instead of R. Now
observe that M||^,,^ < MIk,^ for R ^ Ro and 5i + Sg > 0.
On the other hand, Mj|^,,g < oo because R > p. Therefore the
estimates of Theorem 1.1 hold for all R > p.

Appendix.

Here we derive some uniform estimates for the spherical Bessel
function jn(r), and for the spherical Hankel function h^^r). In particular,
we are interested in the behavior of these functions as n -+ oo and r
belongs to some bounded interval re[0,a] for jn and r > a for h^.
It is clear that the well-known asymptotics

( J -4- 1 \" / \n+l
h^ ~ - 21/2^- l /2r- l -^-j , jn(r) - 2-ll2e-ll2r-ll^r^\ ,

as n -> oo, r — fixed, lead to such kind of estimates. However, we
wish to obtain estimates that are uniform in r.

LEMMA Al. — For n = 1, 2, . . . , and for r > 0 we have

( \ fte er \^^^i^)-
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Proof. - We start with the formula

r" r"
^(r) = ^ n + i . GOS (r cos a) sin27^1 a da.

2 n • Jo

Therefore,

L/.MI ^2.^ f sin^ada.

An elementary calculation shows that

hn+i .'= s in 2 r a + l ada= - sin271 ad cos a
Jo Jo

= ln\ (1 - sin2 a) sin271-1 a da = 2n^_ i - Inl^,.
Jo

Therefore, (2n+ l)I^+i = 2n/2n-i, which, together with the fact that
/i = 2, leads to

/ = . 2n(2n-2)...2 ^ ̂ ,, (n !)2

(2n+l)(2n-l) . . . 3 (2n+l)! '

From the Stirling formula n\ = ^Tin^^exp (-n+9(n)/12n), n > 0,
0 < 9(n) < 1, we get

(Al) ^/Inn^^e-" <n\ <2^/2nnrl+112e-\ n = l , 2 , . . .

Hence

r- (2r)"n! (2^2 /̂271 n^1^-"
I^WI - ̂ -n ! 72ra+l (2n4-l)! < ̂ (2n+l)2-^——

< - _ ^ y _ < - f _ - _ Y
^ /n(2n+l) / !+l/2 n^/2\2n+l/ •

The proof is complete.

LEMMA A2. — For any r > 0 we have

'T p) / ^ \ n

lTOi<^q2+2").
r \ er/
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Proof. - Let us use the following representation of h^

W)»,--,-^^,(-2,y)-.

Since for n = 0 the desired estimate holds, we can assume n ^ 1 . We
have

(n+fc)! n! (n+fc)!
k\(n-k)\ k \(n-k)\ n \ 5

where, by virtue of (Al)

(n+fe)! (n+fe)^^1^-71-* /2nV
n7-^2 n^- ^"(TJ for ^n-

Therefore,

IW)| ^ l^3^-1 ^ , n! f^Y = 2n+3/2r- lfl+n-Y,
^o^Ki-fc)!^/ \ ^/

which completes the proof.
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