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STABILITY OF THE INVERSE PROBLEM
IN POTENTIAL SCATTERING AT FIXED ENERGY

by Plamen STEFANOV

1. Introduction.

Let gq(x) be a potential supported in the ball B, = {x;|x|<p} and
consider the related quantum-mechanical scattering amplitude 4,(®,0,k).
The inverse problem under consideration is to recover the potential
q(x) if A,(w,06,k) is known at a fixed energy k > 0. The uniqueness of
this inverse problem has been established by R. G. Novikov[No] (see
also [SU4], [R]). Novikov’s proof (as well as the other approaches)
reduces the problem to the uniqueness of the inversion A, 2 — g,
where A,_;2 is the Dirichlet-to-Neumann map on Sy = 0B; (see sect. 3)
for some fixed R > p. The latter problem has been investigated in a
series of papers by Sylvester, Uhlmann, Nachman [SU1]-[SU4], [NSU],
[Nal] (see also [No]).

The aim of the present work is to derive a stability estimate related
to the map A4,(®,0,k) — g(k-fixed). More precisely, we find a special
norm of A4, with respect to which that map is continuous. In order to
define it, given a function A(®,0), w e S?, 0 € S? let us expand A(w,0)
in the spherical harmonics Y7 :

1) 4@0) =3 Y T % Gumum YT (@Y ®)

ny=0 my=—n; nyg=0 my=—ny
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(see section 2 for more details). Then we set

y 3 2n1 +1 2ny+2s; 2"2 +1 2ng+ 259 \ 1/2
” ”R,sl,sz - Z ekR ekR 'an1m1n2m2| .

Obviously, |+ |lg,s,s, i a norm which depends also on k (assumed to
be fixed). If 4, is a scattering amplitude associated with some g with
suppq < B,, then [ A4,llgs, s, (o for any R)p. On the other hand,
even for smooth 4, || 4|,

s, may be infinite. This norm admits also
the following equivalent interpretation. Let A,z be the Laplace-Beltrami
operator on S*. Denote B = (1—A.5)"?. Since for the eigenvalues of
B we have (n(n+1)+1)"? =n+ 1/2+ O(n™"), ||4llgs,s, i5 equivalent

to the following norm

2B By+s;—1/2 2B, Bg+sg—1/2
-~ - A
<ekR> (ekR)
Note that the expressions in the brackets are well-defined by means of
the spectral theorem.

S2

L%S?HxLAS?)

Our main result is the following.

THEOREM. 1.1. — Let suppq, < B,, g = q and fix k > 0. Then for
any R > p we have :

a) If qoe H*(R®), s > 3/2, then there exists a neighborhood of q, of
the kind< O = {qe H*(R®) ; supp q < By, llq—qollgs<E}, such that if
g.€0, q,€ O, then

g1 = galle < C¢(||Aql(-, ',k)*qu(‘; k)R 372, - 172) »
where ¢(t) = (—Int)™%, 0 < 8 < 1 for t > O sufficiently small.

b) If qoe L(R®* n H*(R®), s > 0, then there exists a neighborhood
of q, of the kind {qeL*(R®)n H*(R®);suppgq < Bg,
1q—qollzo+ g — qollas< E}, such that for all q,, q, from that neighborhood
we have

g1 = qallze < COUIAg, (= k)= Ag, (+s k)l r,3j2, - 112) -

Our approach is inspired by Nachman’s constructive method [Na2]
of reconstructing q(x) from the scattering amplitude A, at a fixed
k > 0, and by the paper of Alessandrini [A]. A brief description of
Nachman’s method is the following. Given A4,(®,0,k) at a fixed k we
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first recover the Green’s function G,(x,y,k) for |x| > p, |yl > p (see
Proposition 2.2). To this end we expand A4, and G'q in special functions
and use the fact that the leading term of the asymptotic of G, (x,y,k)
x )
xI” byl
Proposition 2.1). Next, since G,(x,y,k) is known for |x| = R, |y| = R,
R > p, we reconstruct A,_,2 by means of explicit formulae (see (3.1)).
And finally, we can use the results of [Nal] to perform the inversion
Aj-p2— q. In order to prove Theorem 1.1, we first get a stability
estimate related to the map A4, — A,_,2. Next, following essentially [A]
we get a stability estimate corresponding to the map A, 2 — ¢.

as |x| - o0, |y| - o0 is [e®™ e”"y'/(47tlx[(y|)]Aq< k) (see

Acknowledgments. — The author would like to thank Prof. A. Nachman
for explaining him the method in [Na2] and for pointing him out
Ref. [L] which is the essential part of the proof of Lemma 3.2.

2. Properties of the Green’s function.

Throughout this section we assume k > 0 fixed and gqe L*(R?),
suppgq < B,, q = g. Recall that the Green’s functions G.(x,y,k) can
be defined as the kernels of (—A+¢g—k*Fi0)™ ' in L(LE L%s), 8 > 1)2
(see e.g. [Nal]) or, equivalently, as the solution of the problem

(— A+ q(x)—k*G.(x,y,k) = d(x—y),

satisfying the outgoing (incoming) Sommerfeld condition at infinity. The
first definition implies G, (x,y,k) = G_(y,x,k), while the second one
yields G, (x,y,k) = G_(x,y,k). Therefore, G, (x,y,k) = G.(y,x,k). Since
in what follows we shall deal only with the outgoing Green’s function G,
we shall drop the sign « + ». To emphasize the dependence on q we
shall use the notation G, instead of G.. It is known, that G,(x,y,k)
is a function that satisfies the following inequality [S]

clx=yI7' < Gy(x,p,k) < clx—y|™", xeR’, yeR’,
which, in particular, implies G, e L{,.(RIx R3). Let
iklx—y|
Gy(x,y,k) = ——
o(%,,k) 4nlx—y|

be the outgoing Green’s function corresponding to g = 0. Since
(A +Ek*)(G,—G,) = (A, +k*)(G,—G,) =0 for |x|>p, [yl>p, it
follows that G, — G, is smooth for suchx, y.
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The following asymptotic is known and we include its proof only
for the sake of completeness.

ProposITION 2.1. — We have
1 ekl giklyl X y >
G,—Gy)(x,y,k) = — — Al —>— —>k |+ B(x,y,k),
(G Gy) = 2 T "<|x| Iyl Il 1y1 205 :6)
where B(x,y,k) = 0, as |x| > o, |y| = .
Proof. — It is known that
exp (ik | x—y]|
@1) Gyyk) = SR EKIX=Y)
4n|x—y|
_ exp (k(Ix|—y-x/|x|)) + 0(xI"?,

47| x|

as |x| - oo, and the convergence is uniform in y € B,. Combining (2.1)
with the formula

2.2) (G—Go)(x,p.k) = — JGo(x,Z,k)q(Z)Gq(Z,y,k)dz,
we get

ik| x| x

] v(?,—r—’k) + O(|x|~?), as|x| > 0.

@3) Gxyk) = o

4

Here v(x,w,k) is the generalized' eigenfunction, which is the solution of
the Lippmann-Schwinger equation

v(x,0,k) = exp (ikx-®) — jGo(x,y,k)q(y)v@,m,k)dy.

The convergence in (2.3) is uniform in ye B,. Substituting 2.1 and
(2.3) into the formula

24 (G,—Go)(x,p.k) = — j Go(x,2,k)q(2)Go(2,y, k)dz,

we get
oikIxl  gikiy|

(Gq_Go)(X,y,k) = - 41tlxl41t|y|

x ( jexp (—ikz-y/lyDg(@)v(z, —Ii—l,k)dz+B(x,y,k)> >
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where B has the needed properties. Applying the formula
1 .
A (0,0,k) = — y fe“"‘""‘q(x)v(x,ﬂ,k)dx

and using the equality 4,(w,0,k) = 4,(—6,—w,k), we get the required
result.

Next we are going to expand G,(x,y,k) in special functions. Recall
that the spherical harmonics are defined as follows :

2n+ 1) (n— Nk .

( 2)m/2 dn 2 n
2™ ! dt"( D"
and o = (sinacosP,sinasinfP,cosa). It is well-known that
{Ym®. n=0,1,...,m=—n,...,n} form an orthonormal base in L*(S?)

and if A, is the Laplace-Beltrami operator on S?, then

n=0,1,...,m= —n,...,n, where P, ,(t) =

(2.5) — AY™ = n(n+1)Y™.

1/2
Let hP(r) = <%) H),,(r) be the spherical Hankel function with

asymptotic

e

(2.6) hP@r) = (- l)"+l +0(r‘2) asr — 00.

Now, let us expand the scattering amplitude 4,(®,0,k) in spherical
harmonics

Aq((‘)>e’k)= Z Z Z Z a"1m1"2'"2 (0))Y (9)

ny=0 my=-—ny ng=0 mg=—ny

where
2.7 Anymyngmy = f J A,(0,0,k) Y”'l(w) Y2 (O)dmde
SZ SZ

The main result in this section is the following.



872 PLAMEN STEFANOV

PROPOSITION. 2.2. — For x| > p, |yl > p we have the expansion

© ny © ny
(28) Gq(xayak) - Go(X,y,k) = Z Z Z Z Ynlmlnsz

"1=0 my=-—ny ﬂ2=0 m2=7n2

X

X KO KIx]) ¥ (—) Bkl y1) ¥ (ﬁ,),
2.

[x]

k? -
Where Ynlmlnzm2 = - ZE (_ 1)”2 l"l T a"’lmlnsz'
The series converges uniformy and absolutely for |x| = R, |y| = R
for any R > p and can be differentiated termwise.

Before giving the proof, we note that this proposition enables us to
find the values of G,(x,y,k) for |x| > p, |y| > p, if 4, is known for
all , 8 and k > O fixed (see also [Na2]).

Proof. — We use the formula [EMOT]

2.9) Golx,p,k) = Y E,n(y.k) hiP(kIx]) YT( a > x| > 1yl,

nom x|

where &,,, = ikj,(k|yl) Y <_}’_> and j,(r) is the spherical Bessel function.

1yl
From (2.2) and (2.4) we get G, — G, = I, + I,, where

Il = - J‘Go(xyzak)q(z)GO(Z,.%k) dZ s

I, = fJGo(x,zl,k)Q(zl)Gq(zl,zz,k)fl(zz)Go(zz,y,k) dz, dz,.
Taking into account (2.9), we get for [x| > p, |y| > p

L= Y O ngmy B (K x[) ¥ (l%) RO (kly)) Yo (,%)

where o, minym, = —Jé”,,l,,,l(z,k)q(z)cg’,,zmz(z,k) dz. Here and below we
e

use the sign ) to denote the sum in(2.8). The coefficients o

nymyngmy

admit the following estimate

(2.10) |0 myngmy | < 111l ”gnlmIHLZ(Bp)”gnzm2nL-2(BD)- ,
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Similarly, for |x| > p, |y| > p

I = Y Buymyngmy B} (kI x1) Y7, <| l)h“’(klyl)Y <|ia>,

where
Bnlmlnzmz = J‘J‘@pnlml(zl’ k)q(zl)Gq(Zl’ ZZ’ k)‘](zz)‘gnzmz(zz, k) dzl dZZ .

Since ¢(2:)G,(21, 22, k)q(2,) € L*(R®), we get
(2.11) |Bn1m1n2m2| < C”(g,nlmlHLz(Bp) Hé”nzmzllma,,)-

Therefore, G, — G, admits the required expansion with some coefficients
Ynymyngmy» and relations (2.10), (2.11) imply the same estimate for

Ynlmlnzmz .

(2.12) [Yaymyngmy| < C “épnlrnIHLz(Bp) ”gannz”Lz(Bp)'

Let us estimate ||£,,||. Using Lemma Al, we get
16 nmllz 2, j linCkly1)I* IY’"(I I)' dy
= k* f f i) P YR (O) 7 dO dr = k? f " Liallr) 24 dr
0 Js 0
< %f (2:6:1)2" ridr=c n("’z(r;:i);) <2ZIT1>W3'

Therefore, for n > 1 we get

ekp >n+ 3/2

(2~13) “(g)nm”LZ(Bp) < C<2n+l

A straightforward calculation shows that (2.12) remains true for n = 0.
Combining (2.12) and (2.13), we arrive at the estimate

ekp ny+32 ekp ng+3/2
< .
Q1) [amyagmy] < C(zn,+1> 2+ 1

In order to prove that the series (2.8) is uniformly and absolutely
convergent, let us estimate each term. Recall the estimate

, 2n+1\"?
Y2 (@)] < <———4 )
T
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(see e.g. Lemma 13, [M]). Combining it with Lemma A2 and (2.14), we
see that the right hand side of (2.8) can be estimated termwise by the
series

© k ny+3/2 k ny+3/2
cy ( oxp > (e—p~) 1,20, + 1)y (2n,+ 1)

nymg-0 \2M1+1 2n,+1
2n, \" 2n,\"?
+ >
8 (2 ekR> <2+ekR>

provided |x| > R, |y| = R. The-series above does not depend on x,y
and if R > p, then it converges. ‘This proves the last assertion of the
proposition.

Now, in order to complete the proof, take the limit x| —» oo,
|yl = oo in (2.8). Then, using asymptotic (2.6), Proposition2.1, and the
equality Y (—0) = (—1)"Y}(8), we get the desired relation between

Gnymyngm and Ynymingmy -

3. Stability of the inversion 4, > A ,_,2.

Let A(®,0) be a smooth function -on “S? X S? (not necessarily a
scattering amplitude). Let us expand 4 in spherical harmonics as in
(1.1) and let a, m;n,m, be the corresponding coefficients (see (2.7)). We

then define the following map (k>0 is fixed).

k® iny+n
N A(m,G) - anlmlnzmz - = % Z (_ 1)"2,"1 2 anlmlnzmz

x hO(k|x|) Y™ <i.>h<,:>(k|y|> )44 <l> = F(x,)).
1 v \jxp) e 2 [yl -

Now, suppose that 4, is a scattening amplitude at a fixed k corresponding
to some g with supp q = B,. Then a, m .,m, satisfy the estimate (2.14).
Therefore, in that case F = A4, is a well-defined function for |x| > p,

|yl > p, which coincides with (G,—G,)(-,-,k). Next, we shall prove
that in fact the map A4 is continuous in an appropriate topology.
Recall the norm ||-|s, s, defined in the Introduction. Estimate (2.14)

(which is satisfied also by an mn,m,) shows that [[4,(+,+,k)llgs,,s, < 00

for any R > p, s,, s,, k > 0, provided that 4, is a scattering amplitude
corresponding to a potential supported in a ball with a radius p. Below
we denote Sz = 0Br = {x; |x|=R}. We have the following.
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ProPOSITION. 3.1. — For any R > 0 and for all s,, s, we have

A AC, Iasispxasasg < Crispsy AR5y -

Proof. — Recall that B = (1—A.p)"%, thus by (2.5 BY" =
(n*+n+1)"2Y7". Therefore

k2
By B A A(Ro,RO) = ~ - Y(=Drattreg, o (R4 R+ 1)R2
x RO (KR) Y71 (@) (n3+n,+1)22 hD(kR) Y72 (0).

Hence, applying lemma A2, we get

j f |Bng$2JVA(Rm,R6)|2dcod9
s2 Js2

kz
T in Y Gnymyngmy|* (B3 0+ D RO (KR) 2 (nf+n,+1)%2 [hD(KR) |2

., e 2n, 2n, , e 2n, 2n,
<C2|anlmlnzm2| (nl+n1+1) +ﬁ (n2+n2+1) +ekR

2ny+2sy 1) 2ngt 259
SCY 1 minm | [ 2L 2t )
, ekR ek/R’

which completes the proof.

Let us recall the Dirichlet to Neumann map A,_,2 (see [SU1]-[SU4],
[NSU]). Let ge L®, supp q = By and assume that k® is not a Dirichlet
eigenvalue of — A + q in Bg. Let u solve the problem

— Au + qu = Ky,
Ulse =

Then we set Ag_yz2f : = Oyuls,, Oy being the derivative with respect to
the outer normal to S;. According to [Nal], A,_2:H¥*(Sg) —
HY*(Sg) is a bounded operator. Below we define the operator norm in
L (H*1(Sr), H**(Sg)) by II*lls,s,- Note that it is different from the

norm |- |lz s, s, given in Introduction.

Since we deal with a fixed k > 0 and with g in a neighborhood of
a fixed gq,, the following question arises. Given k > 0, ge L® with
suppg < B,, can we choose R > p such that k® is not a Dirichlet
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eigenvalue of — A + g in Bp? The answer is positive. Indeed, let
A(R) < Ay(R) < ... be the Dirichlet eigenvalues of — A + g in Bg,
R > p, counted according to their multiplicities. It is well-known that
Ax(R) are non-increasing functions of R (see e.g. [RS], §XIIL.15).
However, in fact they are strictly decreasing, according to [L]. This fact
leads us immediately to the following.

Lemma 3.2. — The set of all R > p, such that k* is a Dirichlet
eigenvalue of — A + q in By, is discrete.

Proof. — Suppose the contrary and let R, < R, < ... be an infinite
sequence bounded above by some R, such that k* = A, (R,) for some

Nn. Since A,(R) is a strictly decreasing function of R and a non-
decreasing function of n, we get n, <n, < ...n, < ... > oo. Thus
k? = Ay (Rm) > A, (Ry) = 0, as m — oo, which leads to a contradic-

tion. The lemma is proved.

The following proposition is the main result of this section.

ProposITION 3.3. — Let gy€ L®, supp q, = B,. Assume that k*> > 0
is not a Dirichlet eigenvalue of — A and — A + q, in Bz, R> p.
Then  there exists a  neighborhood of q, of the kind
0" ={qeL®;suppqcBg, lq—qll,«<E'} and a constant C > 0, such
that for all q,, q, belonging to that neighborhood we have

”Aql—kz_/\qz—ﬂns/z,uz < C||Aq1(-,-,k) - qu(';"k)HR,alz,—llz-

Proof. — Let 9,,: H"*(Sg) > H**(Sg) be the operator

Gorf (x) = f Gq(x,y,k)f(y) dS, .

SR

%, is a bounded invertible operator [Nal]. Furthermore, as proved in
[Nal],

(3.1) Ag-kz = Ay = 9ok — Yok

Let us denote the Dirichlet Laplacian in By by A,. We can show that
the map L*(Bg)3q— (—Ap+q—k?~' is a continuous one if
qe 0’ = {ge L”;suppq < Brllg—qoll.» <E'} and E’ is sufficiently
small. Thus k? is not a Dirichlet eigenvalue of — A + g in By and
A,—x2 is  well-defined for qe®’. Moreover |9, ills1: < C,
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1Ag=k2llzjo,12 < C for qe O'. Therefore, if g, and ¢, lie in 0’ we have
according to (3.1)

= @1 -
Aqlvkz - Aqsz - gql,k(ng,k— gql,k)gqgfk'
Hence
HAql—kz_qu—kZ”:B/Z,l/z < ”gq}}k“wz, 1/2 ngl,k_ng,k”llz,alz ||g;;k||3/2, 1/2
S Q% 0k = Yoprllinsga-

In order to estimate the [ast term we consider

[B*(F g4~ G 0pi)f] (Ro0) = B;”;,’Zj (Gg,~Go,) (Roo, RO, k) f(RO) R* d6

= J [B22By (G, ~ G,,) (Rw, RO, k)] BY*f(R6) R d6.
s2

Here G, (x, y, k) is the Green’s function corresponding to ¢q;, i = 1,2.
Thus we get

Cll(G,, = Gg,) (R, R+, k)l g312(s2 0 m—112(s2)

”gql,k - ng,k”uz,wz <
< C'“(Aq - qu)(', ) k)!‘R,S/z,—ljz-

In the last step we applied Proposition 3.1.

4. Stability of the inversion A,_,: — q.

In this section we prove that g depends continuously on A,z in
an appropriate sense. We note that the theorem below has been obtained
by Alessandrini [A] for potentials q of the kind g = Ay'*/y'?
v > const. > 0. A slight modification of the proof in [A] yields the
desired estimate in a neighborhood of those g, for which k* is not a
Dirichlet eigenvalue of — A + q in Bjy.

THEOREM 4.1. — Let g, € H*(R®, s > 3/2, supp q, = B, and suppose
that k* > 0 is not a Dirichlet eigenvalue of — A + q, in By for some
R > p. Then there exists a neighborhood of q, of the kind
O=1{qeH®R’; supp q < B, lqg — qollg < E}, such that if
g.€ 0, q,€ O, then

lg: = qollie < Cd (”Aql—kZ - Aq2~k2”3/2,1/2)7

where ¢ is the same function as in Theorem 1.1.
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If we assume the weaker condition q, € L®(R® n H*(R®, with some
s > 0, then there exists a neighborhood of q, of the kind
{ge L*(R®) n H*(R®) ; supp q < Bg, IIq — qollzo + 19 — qollas < E},
such that for all q,, q, from that neighborhood we have

g, = qallzz < C O ([Ag-x2 — Agy—s2llaz,112) 5

Proof. — We follow essentially [A], Lemma 2. Given ge L®, we set
Gx) = q(x) — k* for (x) <p, Gx) =0 for |x| = p. According to
[NSU], Lemma 2.2, there exists g > 0, such that if |G|~ < &|C],
supp q < B,, then there is a unique solution to the equation
(—A+§Hu=0 in R® of the form u(x,{) = e *(1 + Y(x,{)), where
{:{=0, LeC?® and

C
4.1) ”‘I’(',C)”szm) < |C_|”q”L2

Let @' be as in Proposition 3.3. As mentioned above if E’' > 0 is
sufficiently small A,_,2 is well-defined for arbitrary qe ¢’. Let q,€ ',
g,€ 0" and denote by u;(x, ) the solution of the kind described above
related to ¢q;, i = 1, 2.

Set ¢, = 2"%g5 ' sup {||§|lz», g € O'} and assume |p| > ¢, Put

i ) i .
Go=—5p-@m+E, L=-sptim+9,
where r > 0, prm=p-E=n-£=0, [n| =1, [§”=r"+ |p|’/4. Note
that |(;|* = 2|Re §;1® = 2(r* + |p|*/4), &;+&; = 0, j = 1, 2. The inequality
Ipl > ¢, guarantees that u;(x, ;) are well-defined. According to [A], we
have

J (g1 = g2) (%) us(x, &) us(x, §,) dx
Bg .
= J Uy (x, 1) (Ag - k2 — Agy—i2) us(x, ) dS,.
SR
Note that u;(x, (;), j = 1, 2 are harmonic functions in a neighborhood
of Sk, hence the right hand side of the equality above is well-defined.

We get

f (@1— o) (x) e **dx= J u1(%,61) (Ag, - k2= Agy-52) (%, C2) S,

- J (g1—gq2) () e” PEN (X, G+ W 0, G) W (x, G Wa(x, Go) 1dx
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Thus, setting q: = q, — ¢, and using (4.1), we obtain
1P| < Clluy(+, C)lla- 1/2(sR)” us(, CZ)I|H3/Z(SR)

X ”Aql—k2 - qu~k2”3/2,112 + C>UGIT + 18617+ 167G,
Here and in what follows we denote by C various constants depending
only on (', which may vary from line to line. Next, since
(— A, + Gy)u, =0, we get
llus(-, CZ)I'H3/2(SR) < Clluy(-, CZ)”HZ(BR) < Cllug(-, CZ)HLZ(sz)

< Cexp 2RIRe G,1) (1 + (G171,

Similarly,

fluy (-, C)lla=12s) < Cllus(+, &) llgsizesyy < Cexp 2R[Re i) (1 + (8,171

Taking into account that %(lpl +r) < |Rel;| =&l < |pl +r, we get
for [pl > ¢,
(4.2) 1)1 < CE™P 0+ Y.
Here and in what follows we denote for simplicity
A= lAgmk2 = Agy-s2llapaye-

Recall that (4.2) holds for any ¢,€ 0, q,€® and the constant C
depends only on (', but not on q,, ¢q,, reR, |p| > ¢,. In order to
obtain a same kind of estimate for |p| < ¢,, we apply the following
lemma (see [A], Lemma 3).

LEmMMA 4.2. — There exists a€(0, 1), ¢ > 0, such thqt for any
holomorphic function F(z) over C?, we have

lzZ|<1 1<(zl<2 iz|<4
Imz=0

max |F(z)| < C( max ]F(z)|> (max | F(z)|)' °.

Since § is a holomorphic function over C® applying Lemma 4.2
together with (4.2), we get

max |§(p)| < C( max |§(p)|)* < C(e*®** >0\ + r~ b,

Ipl<cq co<IpI<2cy
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Here we have used the fact |§(p)| remains bounded if ge ¢, pe C?,
Ipl < 4cy. Since 0 < a <1, it is easy to show that the following
inequality (a + b)* < a* + b* holds for a > 0, b > 0, thus

(4.3) max |[§(p)| < C(e‘m(“'z’-’o) A+ 7).

Ipl<cq

Combining (4.2) and (4.3) together with the fact that [A,_s2llgs 42
remains bounded when g runs over ', we get

Clexp [AR(max (|p|, 2¢,) + P)]A* + r %
C(e4R(r+|p|) A+ r_a)

4.4 14(p)|

NN

for any pe R® with a constant C depending only on ¢'. Now assume
qgeH°, s=13/2+2n, n=0. Setting <{p> =1+ |p/H"? we have
G<pO" =[G <p>T<p>~** "e L’ and moreover |G <{p>"ll1 < Cliqlls.
Since |fllz» < C'lIfllws, we have @: = {ge H’(R®); suppq < Bg,
lg = qollus < E = E'/C'} = O. Therefore for any u > 0 and ge 0, we
get

4.5) f 4(p) ldp < p™" J(W"Ié(p)l dp < Cp™".
Ipl>p

From (4.4) and (4.5) we obtain for r > 0, p > 0

(4.6) lqllze < Cligllpr < C™WA* + pr™> + p"),
where ¢ =q, — ¢,, .€0, q,;€0, c=4R + 1, C= C(0). Putting
p = r"¢ we get

ligllze < C(exp [c(r + r/O] A + 72 + po6),
Set r=— 4% InA. For A sufficiently small we have r > 1. Then
r*% < r and

lgllzo < CA*2 + (= InA)™™2 + (— In A)™™/5),
Applying the inequality A < (=In}2)™!, (0<A<1), we finally get for

A > 0 sufficiently small

gl < C(-InM)7°,  0<d<1.

This completes the proof of the first part of Theorem 4.1. Now, to
prove (b), suppose that ge L® n H®, s > 0. Then similarly to (4.5), we
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can easily prove that
f [g(p)I*dp < Cu™™, n=2>0,
pI>n

for all ge @, O being a neighborhood of the kind given in (b). From
(4.3) and the above estimate we see that ||§|| 2 (and therefore ||ql.2)
admits an estimate similar to (4.6). Now, repeating the arguments
following (4.6), we complete the proof of Theorem 4.1. .

Now we are ready to prove the main result of the paper. Let
qo€ H*(R®), s> 3/2 (goe L°nH*, s>0), suppg, < B, and k > 0 is
fixed. Fix R > p. By Lemma 3.2, there exists R, > R such that k? is
not a Dirichlet eigenvalue of — A + ¢q,, — A in Bg . Since ¢ is an

increasing function and for sufficiently small ¢ >0 we have
¢ (Ct) < C'd(t), we can apply Proposition3.3 and Proposition4.1 to
get the estimates of Theorem 1.1 with R, instead of R. Now
observe that ||Allgys,s, < [l 4llzs,s, for R< R, and s, + 5,2 0.
On the other hand, ||4,llgs,s, < 00 because R > p. Therefore the

estimates of Theorem 1.1 hold for all R > p.

Appendix.

Here we derive some uniform estimates for the spherical Bessel
function j,(r), and for the spherical Hankel function h{"(r). In particular,
we are interested in the behavior of these functions as n — oo and r
belongs to some bounded interval re[0, a] for j, and r > a for h{V.
It is clear that the well-known asymptotics

o (2n+ 1\ . e er \""!
hsll) ~ — 21/2e l/2r 1( p- ) s ]n(r) ~ 2 1/2e l/2r l<2n+1) ,

as n— oo, r — fixed, lead to such kind of estimates. However, we
wish to obtain estimates that are uniform inr.

Lemma Al. — For n=1,2,...,and for r > 0 we have

lin(r)IS—i-( il )
n\/i 2n+1
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Proof. — We start with the formula
rn n
Ja(r) = WJ cos (r cos o) sin®* ! o dot .
*Jo

Therefore,

r" T
ja(r)] < S 'J‘ sin”*t' o do.
nt),

An elementary calculation shows that

m n
Lpis :=j sin®*! o do = —J sin®* a. d cos o

0 0

= 2n f (1=sin*oa) sin® 'ado = 2nl,,_, — 2nl,,.,.

0

Therefore, (2n+ 1)1I,,,, = 2nl,,_,, which, together with the fact that
I, = 2, leads to '
2n(2n—2) ...2 iy (MD?

bnr = 2 =1 .3 2 @n+Dl

From the Stirling formula n! = _/2rn"*"?exp (—n+0(n)/12n), n > 0,
0<06(mn <1, we get

(A1) 2rn"t"%e™" < pnl <2 /2nn"t V%", n=1,2,...
Hence '

" @rn! (2r)"2\/2nn"* ™"

r
j < ”—_"_In+ -
I]n(r)l 2n+1n! 2n+1 (2n+1)| \/ﬂ(zn+l)2n+3l2e—2n—l

en + lrn

e er \"
< < .
Jn@n1yrtr o 2 (2n+1>

The proof is complete.

Lemma A2. — For any r > 0 we have

2./2 n
O] < f(2+2"> :

r er
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Proof. — Let us use the following representation of h{"

5 (n+k
(1)(r) — l—n l —1 ir 2 '(n )k)'

(—2ir)~*.

Since for n = 0 the desired estimate holds, we can assume n > 1. We

have

(m+k)! _ nl (ntk)!
k!'(n—k)! k!(n—k)! n!

where, by virtue of (Al)

n -n- k
(ntk)! (n+k) ThHUzgT Rk 2n+3/2<g§> for k

n! n

< n+1/2 —-n

Therefore,

" n! n\* "
(1) < n+3/2,,—1 . i n+3/2 -1 1+
()] < 2 4 ,‘z::ok!(n—k)!<er> 2 < er)

which completes the proof.
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