On the classgroups of imaginary abelian fields
Annales de l'Institut Fourier, Tome 40 (1990) no. 3, pp. 467-492.

Soit p un nombre premier impair, soit χ un caractère impair de Dirichlet p-adique et soit K l’extension cyclique imaginaire de Q associée à χ. On définit une “χ-partie” du p-sous-groupe de Sylow du groupe de classe de K et on démontre un résultat établissant un lien entre sa p-divisibilité et celle du nombre de Bernoulli généralisé B 1,χ -1 . On utilise les résultats de Mazur et Wiles de la Théorie d’Iwasawa sur Q. Nous nous intéressons principalement au cas plus difficile où p divise l’ordre de χ. Dans cette situation le résultat est nouveau et confirme une conjecture de G. Gras.

Let p be an odd prime, χ an odd, p-adic Dirichlet character and K the cyclic imaginary extension of Q associated to χ. We define a “χ-part” of the Sylow p-subgroup of the class group of K and prove a result relating its p-divisibility to that of the generalized Bernoulli number B 1,χ -1 . This uses the results of Mazur and Wiles in Iwasawa theory over Q. The more difficult case, in which p divides the order of χ is our chief concern. In this case the result is new and confirms an earlier conjecture of G. Gras.

@article{AIF_1990__40_3_467_0,
     author = {Solomon, David},
     title = {On the classgroups of imaginary abelian fields},
     journal = {Annales de l'Institut Fourier},
     pages = {467--492},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {40},
     number = {3},
     year = {1990},
     doi = {10.5802/aif.1221},
     zbl = {0694.12004},
     mrnumber = {92a:11133},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1221/}
}
TY  - JOUR
AU  - Solomon, David
TI  - On the classgroups of imaginary abelian fields
JO  - Annales de l'Institut Fourier
PY  - 1990
SP  - 467
EP  - 492
VL  - 40
IS  - 3
PB  - Institut Fourier
PP  - Grenoble
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.1221/
DO  - 10.5802/aif.1221
LA  - en
ID  - AIF_1990__40_3_467_0
ER  - 
%0 Journal Article
%A Solomon, David
%T On the classgroups of imaginary abelian fields
%J Annales de l'Institut Fourier
%D 1990
%P 467-492
%V 40
%N 3
%I Institut Fourier
%C Grenoble
%U https://aif.centre-mersenne.org/articles/10.5802/aif.1221/
%R 10.5802/aif.1221
%G en
%F AIF_1990__40_3_467_0
Solomon, David. On the classgroups of imaginary abelian fields. Annales de l'Institut Fourier, Tome 40 (1990) no. 3, pp. 467-492. doi : 10.5802/aif.1221. https://aif.centre-mersenne.org/articles/10.5802/aif.1221/

[1] L. Federer, B. Gross, Regulators and Iwasawa Modules, Inventiones Mathematicae, 62 (1981), 443-457. | MR | Zbl

[2] B. Ferrero & R. Greenberg, On the Behavior of the p-Adic L-function at s = 0, Inventiones Mathematicae, 50 (1978), 91-102. | MR | Zbl

[3] B. Ferrero & L. Washington, The Iwasawa invariant µp vanishes for abelian number fields, Annals of Math., 109 (1979), 377-396. | MR | Zbl

[4] G. Gras, Etude d'invariants relatifs aux groupes des classes des corps abéliens, Astérisque, 41-42 (1977), 35-53. | MR | Zbl

[5] R. Greenberg, On p-Adic L-functions and Cyclotomic Fields II, Nagoya Math. J., 67 (1977), 139-158. | MR | Zbl

[6] K. Iwasawa, Riemann-Hurwitz Formula and p-Adic Galois Representations for Number Fields, Tôhoku Math. J., 33 (1981), 263-288. | MR | Zbl

[7] B. Mazur & A. Wiles, Class Fields of Abelian Extensions of ℚ, Inventiones Mathematicae, 76 (1984), 179-330. | MR | Zbl

[8] K. Rubin, Kolyvagin's System of Gauss Sums, Preprint. | Zbl

[9] K. Rubin, The Main Conjecture. Appendix to : Cyclotomic Fields I and II, combined 2nd edition, by S. Lang. Grad. Texts in Math., 121, Springer-Verlag, New York (1990), 397-419. | Zbl

[10] D. Solomon, On Lichtenbaum's Conjecture in the Case of Number Fields, PhD. Thesis, Brown University, 1988. | MR

Cité par Sources :