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ON THE CLASSGROUPS
OF IMAGINARY ABELIAN FIELDS

by David SOLOMON

I. INTRODUCTION

Let p be a prime number, K a finite, imaginary, abelian extension
of Q and Ct(K) the class group of K. This paper is concerned with the
size of certain odd "eigenspaces" for the action of G = Gal(J'C/Q) on the
p—primary part of CC(K) when p ^ 2. The situation of particular interest
to us, and in which our results are new, is that in which p divides the order
ofG.

Fix an algebraic closure Q of Q and let

X: Gal(Q/Q) — Q;

be an odd Dirichlet character. Let F denote Qp(^), the field generated over
Qp by the values of\ and denote by 0 = ~Z-p[x\ its ring of integers. Suppose
that K C Q is as above, with ker \ D Gal(Q/^). If we further assume that
p \ \G\ (hence p \ ord \) then the \ eigenspa^e (C£(K) <g) 0)x of Ci(K) 0 0
is unambiguously defined (for example, as the image of Ct(K) (g) 0 under
the action of the idempotent for \ in OG). Moreover, up to a natural
isomorphism it is independent of K. Iwasawa and Leopold! conjectured
the following result, proven in [7] (Theorem 2, p. 216) as a consequence of
the proof [ibid.} of the Main Conjecture of Iwasawa Theory over Q :

Key-words : Class group - Abelian field - Dirichlet character - Generalized Bernoulli
number - p—adic L— function - Iwasawa theory - Main conjecture.
A.M.S. Classification : 11R29.
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"If p / 2 and x / ^ f^e Teichmiiller character) then the length
of (Ct(K) (g) 0)^ as an 0-module is equal to the F-valuation of the
generalized Bernoulli number B^-i."

Our main result (Theorem 11.1) is a generalization of this statement,
removing the assumption that p \ ord\. I am grateful to the referee for
pointing out that our result appears in an equivalent form as a conjecture
of G. Gras in [4]. (Gras also conjectures a corresponding result for the case
p = 2, which, however, we do not prove). The major tool in our proof is
still the Main Conjecture over Q (whose proof in [7] is for all ^), however
the possibility p \ \G\ clearly engenders a number of complications. Firstly,
although there is a natural generalization of (Ct(K) 0 0)x for any K as
above, without the restriction that p \ [K : Q] it is no longer independent
of K. Therefore, in Theorem 11.2 we shall specify K to be the field "cut out
by ^" (that is, ker^ = Gal(Q/Jf)). Moreover, when p \ \G\ calculations are
hampered by the fact that the "^—eigenspace" functor is no longer exact.
We also remark that new cases will arise in the Iwasawa Theoretic context,
when \ is no longer purely "of the first kind" (i.e. \ may be wildly ramified
atp).

One should mention here the remarkable new methods which have
recently been introduced by Kolyvagin and Rubin and which have led
(among other things) to a new and essentially "elementary" proof of
the Main Conjecture over Q in certain cases (see e.g. [9]). Furthermore,
these methods also apply "at the finite level" (rather than as a limit in a
lp— tower), which holds out the hope of proving results like Theorem 11.1
without any recourse to Iwasawa Theory. For example, by means of a
system of Gauss sums Rubin proves in [8], Theorem 4.3, a result (attributed
to Kolyvagin) which amounts to a classical case of Theorem 11.1, namely
that in which K is obtained by adjoining a primitive p^ root of unity
to Q and \is any odd character of Gal(J^/Q), \ / uj. These methods
undoubtedly extend to more general K and \ and may indeed be applicable
to the cases of interest to us (p|ord^). If this is so, it would seem
nevertheless likely that such cases would introduce significant technical
complications into the method, as they do in our own approach via the
Main Conjecture.

In Section II of this paper we set up notation and state the main
result. Some preliminary results are also established which will help to deal
with the above-mentioned complications. Section III contains the deduction
of the main result by methods analogous to those of [7].
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Some notations used in this paper : /^ is the group of all 71th roots
of unity in Q and we shall denote Q(/iJ by Q(n). Similarly, for a prime p,
^ = G/Apn, Q(p00) = Q(/ipoo). For any number field K, ^n(K), E(K),
I ( K ) and P(K) will denote respectively the 71th roots of unity in K, the
units, ideals and principal ideals of K. Also, if D is a discrete valuation
ring, VD will denote its valuation and ^(M) the length of a jD-module
M (possibly infinite).

II

' 1. \— parts.

Let p be a prime, G a group and \ : G -^ Q^ a multiplicative
character of finite order. Let E C Qp be a finite extension of Qp with
ring of integers D. Assume that D contains the values of \ and let D_
denote the J^G-module structure on D induced by \. (If G is finite then
D_ is the ^-component of a maximal order of EG.) For any DG-module
M we define -D—modules :

and

Mx =:KomDG(D,M)

M^ =: M ̂ DcD

by coextension and extension along \ : DG -^ D. Mx and My are
respectively the largest sub- and quotient-modules of M on which G acts
by \. Indeed, letting J^ denote the ideal of DG generated by all elements
of form g - \(g), g c G, one checks :

LEMMA 11.1. — There are natural isomorphisms of D-modules

{m € M : gm = x(g)m \/g C G} ̂  Mx ^ (M (g>z> D)°

and
M/I^M ̂  M^ ^ (M 0p D)o

where g € G acts on M (g)̂  P by g <g) g~1, so that

M(g)pJ9 ^ Homp(D,M). D
DG .

These functors of M commute with extension and restriction of the
ring D of scalars provided that it contains the values of \. Temporarily
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removing this restriction on D and writing D for -D[^], we have isomor-
phisms

Homp(D, M) ^ M <S>D D

and

(M (g)p D^ ^ Hom^a M) , (M (g)^ 1̂  ^ M (^DG D

as D—modules. For finite G, D is the component of a maximal order of
EG corresponding to the E-conjugacy class of \. This suggests a unified
definition of the notations Mx and M^ for all D. However, we avoid such a
definition, since it does not in general commute with restriction of scalars
and so the notation could result in non-trivial ambiguities were D not
specified. We note, however, that if U is a module for J-pG, the module
' V ^ ' defined on p. 192 of [7] coincides in our notation with the module
(U^lp[^.

If G = G\ x G^ is a direct product and \i denotes \\G,'> ^ = 1,2, we
shall write \ = xiX2' Clearly M^ is a DG2-module and M^ = (M^)^.

If G is finite and p \ |G|, then D_ is a direct factor of DG whence
we may identify both Mx and M^ with the '^—part5 e^M, where e^ is
the idempotent of DG corresponding to \. In this case we obtain an exact
functor of M, commuting with most other operations.

Now suppose that \ is faithful. Then G is finite, cyclic of order ord \.
G is uniquely a product G' x Gp of cyclic subgroups with p \ \G'\ and
\Gp\ = p1", r > 0. Correspondingly, \ = \'\p and let 0,0' denote J.p[\]
and Zp[^:'] respectively and F, F ' their fraction fields. If p \ \G\ (i.e. if
r > 1), then C will denote the subgroup of order p in Gp and Nc its norm
element in IGp.

LEMMA 11.2. — Suppose p \ \G\ and A is an O'G module then
there are functorial isomorphisms of 0' — modules :.

(A ®o' 0)x ^ kerNc^' and (A ̂ o' 0)^ ^ coker7Vc|A<

Proof. — By the above remarks, the left hand sides are easily seen
to be

(A^ (S)o' OY- ^ Homo'G^O.A^)

and
(A^ <^o' 0\, ̂  A^ ^o'G, 0
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respectively. Now a choice of generator g for Gp identifies O'Gp with
O^X}/^ -1) and, since \p is faithful, a minimal polynomial for \Jg)
over 0' is X^-^-D + X^ -^-2) + ... 4-1. If follows that the sequence

O'Gp ̂  O'Gp ̂ -. 0——0

is exact. Now apply the functors Homo/G,,(_,A^') and A^ (g)o/G, _. D

We remark that the above exact sequence extends in an obvious way
to a periodic, complete resolution of 0 as O'Gp-module, from which the
derived functors of _^ and _^ may be calculated. Notice also that the
proof only requires G to be finite and \ to be faithful on the unique Sylow
p— subgroup of G.

COROLLARY 11.1. — In the situation of Lemma 11.2, suppose that
B is an O'G'-module with maps a and /3 :

a
A ^ B

0

respectively surjective and injective on \' -parts and such that /3 o a =
Nc\A. Then there are exact sequences of 0'- modules

0 — (A^O)X — A^ -^ B^' — 0
and

0 — B^ ^ A^ — (A 0 0\ — 0. D

2. The Main Result.

From now on, p is fixed and not equal to 2 and \ : Gal(Q/Q) -^ Q*
is an odd Dirichlet character. K will denote the field cut out by \ (i.e. the
fixed field of ker^), thus \: G -^ Q^ is faithful. Henceforth we shall adopt
the notations of Lemma 11.2 so 0 = Zp[^] etc. but in general we shall treat
the cases p\ ord \, p \ ord \ together. The conductor of \ will be denoted
/ and for n e Z, (n, /) = 1 we shall write a^ for the image of n under the
Artin map (Z//Z)* -> G. We write ^(n) for ̂ n) and if (n,/) > 1 then
X(n) = 0 by definition. B^^-i will denote the first generalized Bernoulli
number :

1 /
B^ =-^nx-\n) ̂  F\

J n=l
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We state our main result as :

THEOREM 11.1.

(1) ^(Bi^-i) = £o((a(K) ^)z W - ̂
where

f 1 if K = Q^^) and \' = a;, the Teichmuller character
°x = \1 0 otherwise.

Remarks 11.1. — (a) Suppose that 6-^ = 1 and let a be a primitive
root modulo p^2. On the one hand it is not hard to show that in this case
(x(a) -a)Bi^-i is a unit of 0. On the other hand, Stickelberger's Theorem
shows that it annihilates (C^'(K)<S)0)X which allows us to deduce Theorem
11.1 in this case. (Indeed, equation (1) becomes : -1 = 0 - 1).

(b) In general, let a be a generator of G and P the minimal polynomial
ot\(a) over Qp. The remarks following Lemma 11.1 show that (Ct{K)^0)x

identifies as 0-module with HomzpG(<2^Wp) and a similar argument
to that of Lemma 11.2 identifies the latter with {a € CC(K)p : P(a)a = 0},
considered as a module for lpG/(P(a)) ^ 0. (Here C£(K)p denotes the
p— primary part of C£(K)). In this form the Theorem becomes the case
p ^ 2 of the conjecture of Gras mentioned in the introduction. (See [4],
"Conclusion", p. 44, taking into account also Remark (a) above).

(c) If L/Q is any finite extension through which \ factors, one may
form (Ci(L) ^ OY = (C£(L)11 (^ 0V where H = G^(L/K). However,
except in special circumstances (e.g. p \ [L: K}, see also Proposition 11.1)
this is not isomorphic to (Ct(K) (g) 0}x.

(d) If we replace 0 by the integers of a finite extension E of F, then
the first terms on both sides of (1) are multiplied by e { E / F ) .

3. Notation and Preliminaries.

Retaining the above notation we describe the Iwasawa Theoretic
context of the proof of Theorem 11.1. Let Boo denote the cyclotomic
Zp-extension of Q, thus Boo = U Qn where B^/Q is cyclic of degree
pn. Let r denote Gal(Boo/Q) ^ Zp and I\ == Gal(Boo/B^). Now KQ^
can be uniquely written as LBoo where L/Q is finite and tamely ramified
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at p, hence linearly disjoint from Boo/Q. Write Ln for LBn and let
m = min{n : Ln D K} :

Then
Lm = LBm =KL= KQm , Gal(WQ) = Gal(L^/B^) x Gal(WL)

and correspondingly, regarding \ as a character of Gal(L^/Q) we have
X=XtP-

\i is faithful on Gal(Ly^/B^) which is identified with Gal(L/Q) and
denoted Q. \t is an odd Dirichlet character of the first kind (with respect
to p) in Iwasawa's terminology, p is faithful on Gal(L^/L) (identified with
r/Fm) and is of the second kind. Q is further decomposed :

Q = G' x Qp
and correspondingly

Xt =XfXt,p'
Let \Qp\ = p8. Then ^ == x'x^pP has kernel Jf = Gal(Lm/K) on
Gal(L^/Q), and If is cyclic of order min^,?171), whilst \p = \t,pP has
order p7' = max^5,?771). Thus -\, \', ̂  and p all take values in 0. We shall
also write Ot and Op for Zp[^] and Zp[p] and F^, Î p for their fraction fields.
Since p / 2 and ^ is odd, so are \t and \', that is, ̂ (r) = ^(r) = —1 where
r is the unique complex conjugation in Q. If M is any Zp[(r)]—module, M~
will denote the 'minus part5, i.e. (1 — r)M. Since p ^ 2, this is an exact
functor of M. Using this notation we have :

PROPOSITION 11.1.
(Ct(K) ̂  0)x ^ (Ci(Lm) ̂  0)x.

Proof. — On the right hand side, \ is of course regarded as a
character of Gal(Lyn/Q) with kernel H. Since \ is odd it will suffice to
show that the natural map C£(K) -°—> C£(Lm)11 induces an isomorphism

(2) (ce(K)^Ip)--^(a(L^)^lp)--H
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on minus parts. Now we have an exact sequence

(3) 0 — ^(Lm) — (L^ ̂  Zp)- — (P(L^) ̂  Zp)- — 0.

CLAIM 1. — H^H.iip^^Lm)) = 0 Vz (Tate cohomoJogy).

Proof of Claim 1. — w.l.o.g. ^p^(Lm) is non-trivial so equal to
jLipm+i. Thus Lm = Kq^p171^1) and the restriction to Q^^1) takes 7:f
isomorphically onto ~H =: GaHQ^-^VQ^^1)) for some k < m. It is
well known that H^H^pm+i) = 0 Vz, (since ^pm+i is finite and ~H cyclic,
one only needs to check that

NormQ(pm+l)/Q(pA.-»-l) : /ipm+l ———> llpk+l

is onto). This proves Claim 1.

Now take ^—invariants in (3). Dropping 0Zp from the notation
we have : P(L^)-'^ = P(^)- and H^H.P^m)-) = 0 (by Hilbert's
Theorem 90). Taking H— invariants in the exact sequence

0 -^ P(Lm)~ —^ I{Lm)- -^ Ce(Lm)~ -^ 0

we see that a~ is injective and cokera" ^ /(L^)"'^//^)". Thus the
result will follow from :

CLAIM 2. — L^IK is unramified at all finite places.

Proof of Claim 2. — Let Q be a prime of K and T its inertia group
in L n / K . We need that T == {1}. There are two cases : if p \ Q then the
projection ofTon Gal(B^/Q) is trivial, hence T C ^fnGal(L^/B^) = {1}.
Ifp|Q then, since H is a p—group and L/Q is tame at p, the projection of
T on Gal(L/Q) is trivial. Hence T C H n Gal(L^/L) = {1}. D

Now let An(L) denote Ct(Ln) <^z ^p (p—primary part) for n =
0,1,2. . . and let Aoo == A^L) denote lim An(L) where the limit is

n

with respect to the natural maps An(L) —^ An+i(L). These are known
to be injective on minus parts so we may write A^ = U An(L)~. Aoo
is a discrete Zp—module and its Pontryagin dual Homz^(Aoo,Qp/Zp) is
compact. Both are topological modules for F x Q (where g € F x Q sends
/ C Hom(Aoo,Qp/Zp) to fog-1). Let Zp[[F]] denote lim Zp[r/r^]. Fixing

n

for once and for all a topological generator c of F, we identify Zp[[r]]
with the ring of formal power series Zp[[T]] by the usual topological
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isomorphism taking c to T -h 1. Then Hom(Aoo,Qp/Zp) is a finitely
generated, torsion Zp[[T]]—module with commuting Q— action. Starting
instead with An 0Zp Of there are isomorphisms of ^[[T]]— modules :

l im(An00f)^Aoo0<^

and
Homc?(Aoo 0 0,Ft/Ot) ̂  Homz,,(Aoo,Qp/Zp) 0 Ot.

(Note that 0^ is free of finite rank over Zp). Now form the module

Homo,(Aoo0(^,F,/0^-i.

It is not hard to show that this is isomorphic to

Homo<((Aoo00^,F</0,).

Let g{-\t^T) denote its Iwasawa polynomial as finitely generated, torsion
Ot[[T}] -module.

One can also form Hoc =: lim An(L) where the limit is now taken with
respect to the maps induced by the norms. It follows from work of Iwasawa
that (Hom(Aoo? Qp/Zp) 0 ̂ L-1 ls pseudo-isomorphic to ((Hoc 0 Ot}^Y,
where the star indicates that the natural F—action has been composed
with inversion in r. Thus if h(Xt^T) denotes the Iwasawa polynomial of
(H^ 0 Ot\, we find :

h(xt,T)=g(xt^l+T)-1-!)

(up to a unit of C^[[T]]). We remark that by [3], Iwasawa's p,— invariant va-
nishes for Hom(Aoo, Qp/Zp), hence also for all Zp[[T]]— or ^[[T]]— modules
appearing here. It follows, for example, that g(\t^T) may be interpreted as
the characteristic polynomial of T == c — 1 acting on the finite dimensional
Ft— vector space obtained by tensoring Hom((Aoo ^> Ot)^ , F t / O t ) with Ff
over Of The Main Conjecture of Iwasawa Theory over Q can now be in-
troduced as follows. For any even Dirichlet character ^ with values in Qp,
let Lp(^^s) denote the Leopoldt-Kubota p—adic L— function attached to
'0. As with ^, ̂  may be uniquely written ^ = 0^t where 6 is a character of
r and the field cut out by ̂  is at most tamely ramified at p over Q. The
action of GaHQQo^/Q) on /^poc identifies the former with Z* in the usual
way, inducing isomorphisms :

^ : Gal(Q(p°°)/Q) -. ̂ -i C Z;

(the Teichmiiller character), and

r -^i+pZpCZ;.
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Let K denote the image of c under the second isomorphism. Iwasawa showed
that there is a unique power series Gp(^t,T) with coefficients in Zp[^j,
depending only on ̂  and c and such that, for s € J-p

L (^ s) - G^^-1)W5S)- (C^5-^
(here < = 0(^/)~1 and 5 = 1 if ̂  is trivial and 0 otherwise). The following
is the Theorem on p. 214 of [7] (previously the Main Conjecture) :

THEOREM 11.2.

h(xt,T) = Gp(^1^) up to a unit ofOt[[T]}. D

In the case p\ord\t O'-e. s > 1), the following notation will be useful.
Since L/Q is cyclic of order divisible by p, there is a unique sequence
of subfields L = L8 D L5-1 D L5-2 ... D L° with [L1 : I/-1] = p for
z = 1,... \s. (Thus Gal(£/L°) = ̂  and Gal(L°/Q) ^ ^/). We form L^ =:
L^n. L^ =: L^ An{L1} = Ct(L^ 0 Zp, Aoo(^) = G A,(LQ e^c.

n=0
When i == 5, however, we shall continue to abbreviate Aoo(L5) = Aoo(L)
to AOQ etc. :

L = L - ,

L " - 1

L'=L

PROPOSITION 11.2. — Let Nn and rfn denote the maps

(cw^oV
Nn

(U(L^)^O'Y

induced by norm and extension of ideals respectively. Then Nn is surjective
and rjn is injective for all i and n.

For the proof we shall use the following "well known" result.
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LEMMA 11.3. — Let C/IC be any Galois extension of number fields
with group H. Let U(C) denote the product of the local units in the
completions of C at all finite places and let rf : C£(IC) —> Ct(C) be the
map induced by extension of ideals. Then

kerr] ^ ker(H1 (H, E(C)) —^ H\H, U(C))).

Proof of Lemma. — Let Jf(C) denote the finite ideles of C. We have
a commuting, exact diagram :

0 0 0
i i i

0 —^ E(C) -^ £*
i i

0 -^ u{C) -^ Jf(C)
Take H— invariants to get :

P(£)
i

I(C) 0 .

0
i

P(/C)
i

J(/C)

0
[

P(£)^
i

I(C)

H\H,E[C))
I

H^nw))
(in fact, the map 6 is surjective). Now apply the Snake Lemma. D

Proof of Proposition 11.2. — Since /i(Q) = 1, there is a prime of
L totally ramified over L°. (Otherwise there would be a p—subextension
N/Q, of L/Q unramified everywhere). This prime does not lie over p since
L/Q is tame at p. Since L\IL1 and L^"1/!/1'"1 are unramified outside p, it
follows that L^/Z4~1 is (totally) ramified at some place w, say, of L\ not
dividing p. By class field theory this implies that Nn is surjective.

L '
L'..'1

As for rjn, temporarily let C denote Gal(L^/L^~1). The actions of Q '
and C commute and 0' is flat over Z so Lemma 11.3 gives :

ker^^ke^^1^,^^))^^')^ -^ (^(C, [7(L^)) 0 OY).
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Since p \ \Q'\, the Y-parts" functor commutes with cohomology and since
p / 2, ^/ is odd which implies

(^(4) 0 oV ^ (^ (L\) 0 o')<
Thus it will suffice to show that

a : H1 (G, ̂  (^)) -. H1 (<7, U(L\)}

is injective. Let k^ denote the residue field of L\ at w. Since p \ w and w
is totally ramified in L^/L^1 it follows that

^(L^)-.A;;

is an injective map of trivial (7-modules. Thus the map

^:Jfl(G,^(^))-.^l(G,^)

is injective. But (3 factors through a, so the latter is also injective, as
required, r-j

COROLLARY 11.2. — For each i = 1,. . . , s there are exact sequences
of 0'—modules :

(4) o — (cw^o^ —. (C^L^O'Y' -^ (ce^-^^oV _ o

(5) 0 — (Aoo(27) 0 Ot)^ —> (Aoo^) 0 0'^'

—(A^-^^OV —0
and

(6) 0 -^ (Hom(Aoo(L1-1), Qp/Zp) (̂  O')^"1

^ (Hom(Ao,(L^),Qp/Z^00')^-l ̂  (Hom(Aoo(L^),Qp/Zp)^,) -i -^ 0^^

Proof. — Equation (4) follows from the Proposition (with n = 0)
plus Corollary 11.1. Similarly, passing to the limit over n, the Proposition
gives maps N^ and 7700 ''

(A^)^OV ^> (A^-^^O'Y1 ,
7?oc

respectively surjective and injective. Applying Corollary 11.1 directly gives
(5). Applying it to the dual maps

TVoc = Homo^A^O'/^) and rj^ = Homo/ (7/00,0'/F')
gives (6). Q
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The following Proposition is useful in extracting from g(\i,T) infor-
mation about class groups at finite levels in the cyclotomic tower. It is a
variation on a well-known result which must be considered afresh because
of the possibility that p divides [L : Q] = ord^ in our situation.

PROPOSITION 11.3. — Hom(Aoo(g)C^ , Ff/Ot) -i has no non-trivial
finite Ot[[T}}-submodules.

Proof. — By duality it will suffice to show that (Aoo ^ Ot}^ has
no non-trivial finite Of [[T}}— quotients. It is known (cf. [5]) that Aoo has
no non-trivial finite Zp[[T]]— quotients, thus Aoo <^ 0' has none for O'[[r]]
and its direct summand (Aoo ^ O'}^ has none either. When \i = \' we
are done, so assume p|ord;\^ and let C denote G^L8 |LS~1) C Q.

CLAIM. H^C.A^) =0.

Before proving this, let us see that the result follows.

Lemma 11.2 gives :

(Aoo ^ Ot)^ ^ ker7Vc|(Aoo ^ O'}^ as O'[[r]] - modules,

where Nc is the norm element of the cyclic group C. On the other hand,
since \' is odd, the Claim shows that the right hand term is actually a
quotient of (Aoo^O')^ and hence has no non-trivial finite quotient modules
for (^[[r]], by the above. A fortiori it has none for 0^[[T]], as required.

Proof of Claim. — Let I(L^)~ denote lim (I(L^) (g) lp)~ and let
n

P(L^)~ denote lim (P(L^) 0 Zp)~ etc. We have an exact sequence
r?

0 -^ P(L^)- —. I(L^)- -^ A^ — 0.

Hence

0 —. H\C^A-^ -^ H\C^P(L^)-) -^ H\C^(L^)-)

is exact and we require to prove that a is injective.

Now
^ P^-^nNci^)- P(L^)-^nJ(L^-1)-

Kera NrP(L^}- '- NcP(L^}-

The proof of Proposition 11.2 shows that {Ct'\L^)^lp)~ -> (C£(L^^'Ip)~
is injective for all n, which implies P^)"'^ nJ(L^1)- = P(L^1)-. On
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the other hand, we have ^(C^*) = 0 (see for example [6] Lemma
5, p. 270). Thus Norm : Z^* -> L^1'* is surjective which implies
NcP(L^)- = P(L^1)-. Thus kera = {0}, which proves the Claim. D

Remark 11.2. — Let Z denote any abelian extension of Q containing
L. Inflate \i to a character of Gal(£/Q) and consider

(Hom(Aoo(Z),Qp/Zp)00,)^-i.

In [7], Proposition 1, it is stated that this has no non-trivial, finite
Ot[P1]-submodules (under the further condition that ZnBoo = Q). Now,
we have used the fact that ^ is faithful, i.e. L = L, crucially in the proof
of Proposition 11.3 and in fact one can give examples to show that when
p divides [L : L], Mazur and Wiles' statement may not be valid, even in
cases where p \ ord \t.

Before moving on to the proof of the main result we need a little
more notation and a lemma. For a number field N, I p ( N ) will denote the
subgroup of I ( N ) generated by primes lying above the rational prime p.
Dn = Dn(L) will denote the subgroup of An generated by the classes of
such primes of Ln, while D^ =: lim Dn C A^ and D^ =: U D^. Now

n ^^

similar arguments to the proof of Proposition 11.1 (cf. [1] Proposition II)
lead to :

(7) (P(Lk) 0 Zp)"'^' = P(Ln)- for each n,k, k > n > 0
and to an exact sequence

(8) 0 -^ An(L)- -^ A^L)-'^ — (Jp(£k) ® Z,)~ -^ 0
\lp(Ln) y

since Lk/Ln is ramified precisely at the primes over p. Moreover, these
primes are totally ramified in L^/L, so there is an isomorphism

(9) (^ ̂  zp) " K0111^^ (P-^-^/I,))

of Zp^-modules, where P denotes the decomposition group of p in L.
By total ramification, the I^-action on I p ( L k ) is trivial. Thus, by (7),
principal "ideals" in (Ip(Lk) ̂  Ip)~ come from Ln. Consequently :

(10) the map (w) 0 Z,)~ -^ (^^Y is an isomorphism.
^pl^rj / \Un{Li)/

Putting together (8)-(10) and letting k -^ oo we obtain :

LEMMA 11.4. — For each n > 0, there is an exact sequence
0 — A ^ — ^ A ^ - " — ( D ^ / D n ) - — 0
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so that A^ =A^D^.

Moreover

(DooADn)- ^ (^^ ® Zp)~ ̂  Homz,p(Z^,Qp/Zp)-
^p^-^n) /

as J-pQ— modules with trivial Tn~ action. D

III. THE PROOF OF THEOREM 11.1

As in [7], the proof falls into two cases according as \(p) is or is not
equal to 1, that is, whether or not p splits completely in K.

Case 1 : x{p) / 1.

This includes all the cases where m > 1, (that is p -^ 1), so that
x(p) == 0- Recall that, for an even Dirichlet character ^ we have :

L^,l-n)=-]-(l-^n(p)pn-l)Bn^ for n=l,2,3...
Tli

where ^n ='- ^~n^-
Thus

L^-^O) _ Gp^x^C-l)1^'1 (I-X-KP)) ^-x-^pm-^
where now ^ = p(c) so vo(^ ~ 1) > 0.

By the Main Conjecture (Theorem 11.2) we have :

(11) vo(B^-.) = voWxt^- 1)) - ̂ o(l - X~\P)) - S^vo^ - ̂ )

and 6^ / 0 implies 0 = Zp[p] so that vo(C ~ K-) = 1- I11 vlew °f Proposition
11.1, the result will follow from

io((A^ ® OY) = vo(h(xt, C - 1)) - fo(l - X~\P})

which follows in turn from the two succeeding propositions, valid when
X{P) / 1.

PROPOSITION III.l.

vo(h(^ C - 1)) = ̂ ((Aoc 0 0)^)

and



^2 DAVID SOLOMON

PROPOSITION III.2.

4)((A^ ̂  0)^) = ̂  ((Aoo 0 0)1^) - ̂ (l - ̂ -\p)).

(\ is here regarded as a. character ofGal(L^/Q), by inflation).

Proof of Proposition I I I . l . — For brevity, let M denote the
0[[T}\ -module

Hom(Aoo 0 Ot,Ft/Ot)^i 0o< 0 = Hom(Aoo 0 0 , F / 0 ) -i.

Its Iwasawa polynomial is g(\t,T) regarded as an element of 0[[T]]. By
Proposition 11.3 (applying ®o,0) and the Structure Theorem for finitely
generated, torsion 0[[T}} -modules there is an exact sequence

(12) 0 —— M -^ 9 0[[T}]/(g,) -^ A -^ 0.
j=i

Here A is some finite 0[[T}\ -module and the gj are polynomials with
II 93 == 9(Xt.T). Since /i(^,C - 1) ^ 0 by (11), (T - (C-1 - 1)) \ ̂

for all j. Thus (T - (C"1 - 1)) acts injectively on the middle term of (12)
and an application of the Snake Lemma yields an exact sequence :

(13) 0 -^ ker(T - (C-1 - 1))|A -^ coker(T - «-1 - 1))[M -^
C 0[[T]}/(g^T - (C-1 - 1)) -^ coker(r - (C-1 - 1))|A —. 0.

It is easy to see that

coker(T - «-1 - 1))[M = Mr,,^-i
and that

0[[T]]/(g^T - (C-1 - 1)) - 0/^(C-1 - 1).

Since A is finite, applying io to (13) gives :

M^^-i) = Y,voW - 1)) = voWxt^ - 1)).
j

In particular My^^-i is finite and since

Mr^-i = Hom((Aoo ^ Of-^.F/O),
Proposition III.l follows by duality. Q

Proof of Proposition III.2. — We shall use the exact sequence

(14) 0 —. A,, ̂  0 —^ (A,, 0 0)^" ̂  (D^/D^) 0 0 — 0

from Lemma 11.4.
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The case \ = \' (in which m = 0) is dealt with in [7] : since
p \ ord^ and \(p) / 1, Lemma 11.4 implies (D^/DQ 0 0)x = 0. Since
also i;o(l - x"1^)) = O? the result follows from (14) on applying the
functor _x.

From now on, assume \ ̂  \'. Then

((D^/D^^O^ and ^(l-x-^p))

are non-zero in general (respectively iff ^(p) = 1 and iff ^(p) = 1 and
p = 1). On the other hand, the functor _^ is not exact, so some care is
required. We consider the cases m > 0, m = 0 separately.

Case l(i) : m > 0.

In this case p / 1 so x~l(p) = 0 and the Proposition will follow from :

(A^ (g) 0)p —> (A^ (g) Of^^ is an isomorphism

on applying _^. Using Lemma 11.2 with p for \ this in turn will follow
from :

(ker7V-|A^) -°—^ (kerTV-IA^"1) is an isomorphism

where C denotes Gal(L^/L^_i). Now a is clearly injective so take an
element x of A^"1 killed by TV- and, by Lemma 11.4, write x = [ad], a €
(J(L^)(g)Zp)-, d C (Ip(Lk)^lp)- some A; > m. Clearly (A^a)^ = A^(ad)
is in (P(Lfc)(g)Zp)?n-l hence comes from L^_i, by (7). Thus dp comes from
Lm-i- Since all primes above p are totally ramified in Ljfc/L^_i, d comes
from Ljn' It follows that a is surjective as required.

Case l(ii) : m = 0.

In this case Vrn = F, ^ == ^, ^ == G', Lm = L = K, write Ki for L',
% = 0,1,... , s (K8 = K), and define D^K') just as for Dn = ^n(^), for
each n and z. Consider the following commuting diagram, with exact rows
from Lemma 11.4 :
(15)

0 -^ {Ct{K)®0'V1 -^ (A^K^O'Y^' -. {(D^(K)/DQ(K))®O'Y' -^0
i N ' [ N [ N "

o ^(^(^s-l)0a/)^/^(Aoo(^s-l)00/)^'x/--^((^oo(^s-l)/^o(^s-l))^o/)^-^o
Here the vertical maps are induced by the norms from Kn to K^~1. By
Corollary 11.2, N ' is surjective and

(16) ker^V' ^ (C£(K) ̂  0)x

o1
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and

W kerN ^(AooW^O)^.^
0'

Now identify ((Dn(K)/Do(K)) ^ 0')^ with ((Ip(Kn) / Ip(K)) 0 O')^
by (10) and similarly with K replaced by K8-1. Since K^/K^1 is
totally ramified and P/K^ unramified at primes above^, we have
Ip(K^-1) n Ip(K) = I^K8-1) in Ip(Kn) for all n. Thus we may regard

((^oo^5-1)/^^-1))^^')^
as a submodule of

((D^(K)ID^K))^O'Y'

and replace N " by the map induced by Nc on the latter. We then find •
(18)
kerTV" ̂  ((D^(K)/Do(K)) 0 0)x by Lemma 11.1

^ Homo(;(0,Homop(0^,F/0)) by Lemma 11.4, since x is odd

^ Homop(0,F/0) ^ ker(l - ̂ ((T))|F/O

where V is generated by a.

Equations (15)-(18), together with the surjectivity of N ' give an exact
sequence

(19) 0 ̂  (Ct{K) 0 0)x -^ (A^(K) 0 0)^ -. ker(l - x(^))|^/0 ̂  0

Now suppose that p ramifies in K, then it ramifies tamely so that a is not
ofp-power order. Since \ is faithful, this implies that

<o(ker(l - X^MF/O)) = vo(l - ̂ )) = 0 = vo(l - X~\P})

and the Proposition follows from (19) in this case. If p is unramified, we
may take a = a? so x(a) ̂  1 and again the result follows from (19). ' D

This concludes the proof of Theorem 11.1 in the case x(p) /I.

Case 2 : x(p)== 1.

Since \ is faithful, P = {1} and p splits completely in K. Also,
m = 0 so x = Xt, G = G, L = K and we write K1 for L1 as in Case
l(ii). The method of that case fails because A(^,0) = 1 - x{p)~1 = 0 and
indeed the last two non-zero modules in (19) are infinite. To harness the
force of Theorem 11.2 one must therefore factor out the "trivial" zero of
h(\t,T) both algebraically and analytically. The method we shall use is an
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adaptation of that explained in [7] (due to Greenberg) to suit our situation
in which p may divide ord \.

Algebraically, "removal of the zero" means replacing Aoo by Aoo/Ax) :
for each i and n we denote A^K^/D^K') by E^K'). Let

E^K^)=\lm En(K1)
n

(in fact £00 (^)~ = U En(K1)- by an easy argument). Also define A(J^),
a submodule of ^(r^oo^)), by the exactness of the sequence

0 — ^oo(^) — A^f -^ £oc(^^)^ — A(^) — 0.

Since •\1 is odd and p \ |G"|, Lemma 11.4 gives :

(A^f 0 O'Y' = (Ct(K1) 0 0'Y\D^(K1) (S) 0')<

Thus we have an exact sequence :

(20) 0 — A)(^T' — C^K1)^ — E^K^^ — A(^)^ — 0

where we have omitted 00' from the notation.

Analytically, we need to work with L^^^'^O). This was shown to
be non-zero by Greenberg and Ferrero who evaluated it in terms of the
p—adic logarithms of certain Gauss sums which we now define. Fix a prime
p above p in K and a prime y above p in Q(/). If k denotes the residue

Tfield at (? then for x € A;* the power residue symbol (—) is defined by

( f ) 6 ^ ' (l^^l^od^

Choose a primitive p^ root of unity C e Q and define the Gauss sum

^-E&c"^
xEk- + -

where Tr denotes the trace from A; to Z/pZ.

We find that 7^, a priori an element of Q(p/), is actually in TV, the
decomposition field of p in Q(/) and is independent of the choice of C.
Define 7 to be Normjv/x ¥ ^ K and note :

(i) 7 depends only on p. Furthermore, replacing p by p^ for a € G
replaces 7 by 7°'

(ii) 7^ is a p-unit. Indeed, by Stickelberger's Theorem :

(21) ^OK=P0 where 0= ^ aa^ elG
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(hi) If we let ^ denote the embedding of K in its completion at p
(isomorphic to Qp) and logp the p-adic logarithm normalized by log (p)=0,
then p

1

aeG
(22) L^-^Q) = — ̂  x-^log^r)) + 0

7 aCG
(see [2]). This gives :

LEMMA III.l .
< K ^ O ) = 0

-1
and

^?,0)) = ̂ (^ x-^log^r))) < oo.^ /

(TGG'

Proof. — Theorem 11.2 implies

9(X^~8 - 1) = u^-8 - l)Lp(^~\s) for any s € Zp

where u(T) e 0[[r]]*. Since ^(p) = 1, the right hand side is zero when
5=0. Now differentiate both sides with respect to s and set 5=0 . D

Let p^) denote the prime of K1 below p , i = 0,1,... , s. Starting with
p^ one defines ̂ \ ̂  etc. by exact analogy with (?, 7 etc. In general,
the notation for an object associated to K (e.g. f,G) will be augmented
by a superscript T to denote the version for K1 (e.g. f^.G^.

Let W(K1) denote the group ofp-units of K1 regarded as a subgroup
of W(K8) = W(K). The element ̂  c W(K1) is, in a sense, analogous
to a cyclotomic unit of K1. Its image in (W^) (g) Zp)- generates a
ZpG"-submodule which is not in general of finite index. This can be
remedied by adding as further generators the p-units derived from Gauss-
sums corresponding to all subfields of K1 of strictly smaller conductor
(a similar phenomenon occurs with cyclotomic units). However, for our
purposes, it will suffice to define submodules

V(K1) =: (W(K^)aG^} C W(K1) , z = 1,...,,
and

V(K°)=:1G°^ CW(K°)

and work with
(V(K1} 0 0V c (W^) ̂  OV.

Now define ZpG-linear maps

^\:W(K)^I^—Ip(K)^Ip



CLASSGROUPS OF IMAGINARY ABELIAN FIELDS 487

by p,(x (g) 1) = ̂  q (g) ordq(rc)
q

\(x^l)=^q^\og^(x))
q

where q runs over all primes dividing p in K, and t^ denotes the embedding
of K in its completion at q (isomorphic to Qp). Clearly, A and ^ induce
maps from W(K^O' to7p(Jr)(g)0', (denoted by the same letters) taking
^'-parts to ^'-parts. Since fip (f_ K and \' is odd, /A is an embedding on
\' -parts and A will turn out to be one also. Also note that the image of A
is contained in (pIp(K) 0 O ' ) ^ . (We shall often omit ^0' for brevity).

Since (—t^——)' ^ 2W)< we have, from (20) :

LEMMA III.2. — For i == 0,.. . , .s, there are exact sequences of
0'— modules :

(23) o^^Wv' _^ (W^Y' ̂ w^'
' ) \fiV(Ki)) \p,V(K1)) ^Lt^'

— E^K1^^ — W^' -^ 0
and

(24) o ̂  f^^Y' _^ (p_wiY1 — f^^ir' — ov / \\V(K^) \\V(K^) \\W(K^) u-

The method of [7] for the case \ = \' consists essentially in showing
that all the modules in (23) and (24) are finite and calculating and
comparing their lengths. When \ / \' (i.e. s > 0) we shall recover the
result by considering the sequences for i = s, s — 1 simultaneously. One
could easily treat the case s = 0 in parallel. For simplicity, however, we
shall assume s > 0 and refer to [7] for the case s = 0. In particular, this
means we can assume that for i = 0, all modules in (23) and (24) are finite.

LEMMA III.3. — (E^K^^O'^^ and (E^K^^O')1'^1 are
finite and
to'^E^K8) ̂  O')^) - to'^E^K8-1) ̂  0')^)

=^(lE^-l((7)lo^p(^)))•
' (TOG

Proof. — For z = 1.....5 let a,(^,r), e^,T) C 0'[T} denote the
Iwasawa polynomials of

(Hom(Aoo(Jr), Qp/Zp) 0 OY~1
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and
(llom(E^K^),qp/lp)^Of)xl~l

as O'[[r]]—modules respectively. Since T>1 = 1, it follows from Lemma 11.4
applied to K1 that

(Hom(Ax)(^), Qp/Zp) ̂  CQ^"1

has a submodule of finite index isomorphic to 0'^ with trivial F—action.
By the multiplicativity of Iwasawa polynomials, this gives

(25) a,(^r)=6,(^r)J<

Also, by (6) of Corollary 11.2 :

(26) a,(x',T)=a,-i(x',r)/,(r) f o r z = l , . . . , 5

where fi(T) is the Iwasawa polynomial of (Hom(Aoo(^),Qp/Zp) 0 0)^
considered as an O'^T]]—module. By considering characteristic polyno-
mials, it is not hard to see that

/,(r)=n<7(x,7r
where a runs through Gal(F/F'). Thus, from (25) (i = s,s - 1) and (26)
(z = s) we get

es(x^T) = e,-i(x',r) n (^(x,r)/rr
and so

(27) z;o/(e,(^,0)) = ^/(e.-i^^O)) +^(^(X,0)) (oo allowed).

On the other hand, (Hom(Foo(^),Qp/Zp) 0 O')^"1, as a submodule of
(Hom(Aoo(^),Qp/Zp) <3) O')^"1, has no nontrivial, finite ^[[Til-quo-
tients, so arguing as in Proposition III.l, vo'{^i(x1 ̂ )) = ^((^oo^1) ®
O ' Y ^ ' ) (both sides being simultaneously finite or infinite). Thus, the
Lemma follows from (27) and Lemma III.l provided that (Eoo^K8"1) 0
O')^^ is finite. For 5 = 1 the latter is assumed (case \ = ^') and so the
result may be established by an induction on s. D

LEMMA III.4. — The injection Ip^K8-1) (g) 0' -^ Ip(K8) 0 0'
induces injective maps of 01— modules :

(Pl^K^Y' ^ (Pl^K^Y'
^XW^K8-1)} —' {XV^K8)}

and
( W8-1) y9 A, (W^y'
y^W^K8-1)) \tiV{K8))



CLASSGROUPS OF IMAGINARY ABELIAN FIELDS 489

where 00' has been omitted from the notation. Moreover

(28) ^(cokera) = vo(1 ̂  X-^log^^r)))
<T€G

and

(29) ^(coker/3)=^(Bi^-i).

Proof. — Consider a. First identify p I p ( K 8 ) 0 0' with O'G via
the O'C-isomorphism taking p 0 p to 1. Thus A(7 (g) 1) corresponds to
- ̂  ̂ ogp(tp(Y))a~1. For brevity, denote the latter by e, and the image
^ creG
of A(iy(Jif5-1) <g) 0') under this identification by A C NcO'G. Thus a
becomes the map

/TvcO'G^ _^ / O'G \^
v A J " "VeO 'G+AJ

(^/-parts are just the images under the action of the idempotent attached
to \'). Now, it is easy to see that \ induces an isomorphism of 0' -algebras

{0'GY1/Nc^G)^ —^0

(cf. the proof of Lemma 11.2), so consider the following commuting square

{O'G^'lNc{0'GV1 -^ 0

I x£ [ XX(^)

{0'GY1 lNc{0'Gy -^ 0

Now x(e) = - ^ X-l(^)logp(^(7<T)) / 0. Thus the left hand
^ (J^G

vertical map is injective from which one deduces that a is injective, using
the fact that Nee = A(Norm^/^-i 701) is in A, by definition of
^(JC5"1). Since the left-hand vertical map has the same cokernel as a,
(28) also follows. (Note that 0/0' is totally ramified). The proof of the
statements about /? is similar : this time, identify I p ( K 8 ) <g) 0' with O'G
by taking p (g) 1 to 1. Then ^(70 1) corresponds to 0 € O'G by (21) and
the proof proceeds as before. D

COROLLARY III.l. —
are finite, for i = 0,1, . . . , s.

^ A i fPfp^V . I IpW vThe modules (^) and (̂ )
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Proof. — The statement for i = 0 is from the case \ = \'.
Inductively we may assume the statement holds for i = 0 , . . . , 5 — 1. Afortiori' (fy^-i^rand (^L-i^rare finite-since the n^
hand sides of (28), (29) are finite, the statement holds for i = s. D

Together with Lemma III.3 this implies

COROLLARY III.2. — For z = = 5 , 5 - l , each of the modules in (23)
and (24) is finite. D

Next, the extreme terms of (23) "cancel" with those of (24). More
precisely :

LEMMA III.5. — There are isomorphisms

di^r'-w^
'"'(^)''s(^)^(^r'—-'.

Proof. — The isomorphism (i) is essentially Proposition 3 p. 222 of
[7]. The proof goes through because we now know that both Eoc(K^)x 'r

and ( • ' ) are finite. The finiteness of the latter also implies that

A is injective on W^K^' (which is torsionfree). Since /x is also injective,
(ii) follows. D

COROLLARY III.3.

(30) ^(^(^s)^) ̂ ^o^-^-)'' ) +^(£U^S)^'X/)

//^(^hA
"^^Ay^yJ )

and

(31) io'mK^Y1) = to' ((-^jl^——r ) + to'(E^KS~l^^l)

//^(J^-1)^
~to'\{x\V(K^~)) )

(All terms being finite.)

Proof. — (23) and (24) together with Corollary III.2 and Lemma
III.5 give (30) and also a similar equation with K8 replaced by Ks~l.
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« W(K8~l}\X\
Adding and subtracting to' v(^s-\\) } from the "S^ hand side of

the latter gives (31). Q

To conclude the proof of Theorem 11.1 in the case \(p) = 1, we need
£o'(Ct(K8) (S) O)^ = vo(B^^-i). This follows on subtracting (31) from
(30) and applying Corollary 11.2, equation (4) to evaluate the left hand side
and Lemmas III.3 and III.4 to evaluate the right hand side of the resulting
equation.

The material described here appeared largely in the author's PhD
thesis [10] in relation to a conjecture of Lichtenbaum on Artin L— functions
at s = 0. I would like to thank my advisor, T. Chinburg and also
R. Greenberg, K. Rubin, R. Schoofand M. Taylor for helpful and interesting
conversations.
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