New examples of non-locally embeddable CR structures (with no non-constant CR distributions)
Annales de l'Institut Fourier, Tome 39 (1989) no. 3, pp. 811-823.

De nouveaux exemples de structures CR non réalisables sont donnés. Ils sont basés sur une construction simple qui consiste à recoller deux structures plongées. Ces exemples semblent améliorer en partie des exemples anciens de Nirenberg, et Jacobowitz et Trèves, mais l’avantage principal en est peut-être le caractère transparent, qui en rend l’étude facile.

We construct examples of non-locally embeddable CR structures. These examples may show some improvement on previous examples by Nirenberg, and Jacobowitz and Trèves. They are based on a simple construction which consists in gluing two embedded structures. And (this is our main point) we believe that these examples are very transparent, therefore easy to work with.

@article{AIF_1989__39_3_811_0,
     author = {Rosay, Jean-Pierre},
     title = {New examples of non-locally embeddable $CR$ structures (with no non-constant $CR$ distributions)},
     journal = {Annales de l'Institut Fourier},
     pages = {811--823},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {39},
     number = {3},
     year = {1989},
     doi = {10.5802/aif.1189},
     mrnumber = {1030851},
     zbl = {0674.32008},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1189/}
}
TY  - JOUR
AU  - Rosay, Jean-Pierre
TI  - New examples of non-locally embeddable $CR$ structures (with no non-constant $CR$ distributions)
JO  - Annales de l'Institut Fourier
PY  - 1989
SP  - 811
EP  - 823
VL  - 39
IS  - 3
PB  - Institut Fourier
PP  - Grenoble
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.1189/
DO  - 10.5802/aif.1189
LA  - en
ID  - AIF_1989__39_3_811_0
ER  - 
%0 Journal Article
%A Rosay, Jean-Pierre
%T New examples of non-locally embeddable $CR$ structures (with no non-constant $CR$ distributions)
%J Annales de l'Institut Fourier
%D 1989
%P 811-823
%V 39
%N 3
%I Institut Fourier
%C Grenoble
%U https://aif.centre-mersenne.org/articles/10.5802/aif.1189/
%R 10.5802/aif.1189
%G en
%F AIF_1989__39_3_811_0
Rosay, Jean-Pierre. New examples of non-locally embeddable $CR$ structures (with no non-constant $CR$ distributions). Annales de l'Institut Fourier, Tome 39 (1989) no. 3, pp. 811-823. doi : 10.5802/aif.1189. https://aif.centre-mersenne.org/articles/10.5802/aif.1189/

[1] T. Akahori, A new approach to the local embedding theorem for CR structures for n ≥ 4, Memoirs of the AMS no. 336, Providence, RI 1987. | Zbl

[2] D. Hill, What is the notion of a complex manifold with boundary, Prospect in Algebraic Analysis [M. Saito 60th birthday vol.].

[3] H. Jacobowitz, The canonical bundle and realizable CR hypersurfaces, Pacific J. Math., 127 (1987), 91-101. | MR | Zbl

[4] H. Jacobowitz, F. Trèves, Nonrealizable CR structures, Inventions Math., 66 (1982), 321-249. | Zbl

[5] M. Kuranishi, Strongly pseudoconvex CR structures over small balls, Ann. of Math., I 115 (1982), 451-500, II 116 (1982), 1-64, III 116 (1982), 249-330. | MR | Zbl

[6] G. Lupacciolu A theorem on holomorphic extension for CR functions, Pacific J. Math., 124 (1986), 177-191. | MR | Zbl

[7] L. Nirenberg, Lectures on linear partial differential equations, Conference Board of Math. Sc., Regional Conference Series in mathematics No. 17, AMS, 1973. | MR | Zbl

[8] L. Nirenberg, On a question of Hans Lewy, Russian Math. Surveys, 29, (1974), 251-262. | MR | Zbl

[9] J.P. Rosay, E.L. Stout, Rado's theorem for CR functions, to appear in Proc. AMS. | Zbl

[10] M.C. Shaw, Hypoellipticity of a system of complex vector fiels, Duke Math. J., 50 no. 3 (1983), 713-728. | MR | Zbl

[11] F. Trèves, Approximation and representation of functions and distributions annhilated by a system of complex vector fields, Ecole polytechnique (1981). | Zbl

[12] F. Trèves, Introduction to pseudodifferential and Fourier Integral operators, Plenum (1980). | Zbl

[13] S. Webster, On the proof of Kuranishi's embedding theorem, (preprint). | Numdam | Zbl

[14] D. Catlin, A Newlander Nirenberg theorem for manifolds with boundary, Mich. Math. J., 35 (1988), 233-240. | MR | Zbl

Cité par Sources :