On discute le problème de la caractérisation des algèbres de Lie graduées qui peuvent être réalisés comme des algèbres de Lie homotopiques d’espace de type . Les résultats principaux sont exprimés à l’aide de la notion de variété des constantes structurales. On démontre aussi quelques critères pour des algèbres concrètes.
The problem of the characterization of graded Lie algebras which admit a realization as the homotopy Lie algebra of a space of type is discussed. The central results are formulated in terms of varieties of structure constants, several criterions for concrete algebras are also deduced.
@article{AIF_1989__39_1_193_0, author = {Markl, Martin}, title = {On the rational homotopy {Lie} algebra of spaces with finite dimensional rational cohomology and homotopy}, journal = {Annales de l'Institut Fourier}, pages = {193--206}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {39}, number = {1}, year = {1989}, doi = {10.5802/aif.1163}, zbl = {0657.55016}, mrnumber = {90h:55018}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1163/} }
TY - JOUR AU - Markl, Martin TI - On the rational homotopy Lie algebra of spaces with finite dimensional rational cohomology and homotopy JO - Annales de l'Institut Fourier PY - 1989 SP - 193 EP - 206 VL - 39 IS - 1 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1163/ DO - 10.5802/aif.1163 LA - en ID - AIF_1989__39_1_193_0 ER -
%0 Journal Article %A Markl, Martin %T On the rational homotopy Lie algebra of spaces with finite dimensional rational cohomology and homotopy %J Annales de l'Institut Fourier %D 1989 %P 193-206 %V 39 %N 1 %I Institut Fourier %C Grenoble %U https://aif.centre-mersenne.org/articles/10.5802/aif.1163/ %R 10.5802/aif.1163 %G en %F AIF_1989__39_1_193_0
Markl, Martin. On the rational homotopy Lie algebra of spaces with finite dimensional rational cohomology and homotopy. Annales de l'Institut Fourier, Tome 39 (1989) no. 1, pp. 193-206. doi : 10.5802/aif.1163. https://aif.centre-mersenne.org/articles/10.5802/aif.1163/
[1] Linear algebraic groups, W.A. Benjamin, New-York, 1969. | MR | Zbl
,[2] An arithmetic characterization of the rational homotopy groups of certain spaces, Inv. Math., 53 (1979), 117-133. | MR | Zbl
, ,[3] Finiteness in the minimal models of Sullivan, Trans. Amer. Math. Soc., 230 (1977), 173-199. | MR | Zbl
,[4] Spaces whose rational homology and ѱ-homotopy are both finite dimensional, Astérisque, 113-114 (1984), 198-205. | MR | Zbl
,[5] The structure of π*(ΩS), Astérisque, 113-114, 109-117. | MR | Zbl
,[6] Algebraic geometry, Springer, 1977. | MR | Zbl
,[7] Dénombrement de types d'homotopie rationnelle, C.R. Acad. Paris, Sér. A, 287 (1978), 109-112. | MR | Zbl
, ,[8] Rational homotopy theory, Ann. Math., 90 (1969), 205-295. | MR | Zbl
,[9] Commutative algebra, Vol. I, Princeton N.J., Van Nostrand, 1958.
, ,[10] Commutative algebra, Vol. II, Princeton N.J., Van Nostrand, 1960. | Zbl
, ,[11] Osnovy algebraicheskoj geometrii, Moskva, 1972. | Zbl
,[12] Homotopie rationnelle : Modèles de Chen, Quillen, Sullivan, Lecture Notes in Math. 1025, Springer, 1983. | MR | Zbl
,Cité par Sources :