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ON THE RATIONAL HOMOTOPY LIE ALGEBRA
OF SPACES WITH FINITE DIMENSIONAL RATIONAL

COHOMOLOGY AND HOMOTOPY

by Martin MARKL

Introduction.

A path connected topological space S is said to have type F , if

dim(Jr(5;Q)) < oo and dim(7r^(5)) < oo ,

where ^(5) denotes the ^-homotopy of the space S [12; p. 61]. If S is
simply connected, the previous condition is, of course, equivalent with

dim(If*(5; Q)) < oo and dim(7r^(5) 0 Q) < oo (see [2]).

Spaces of type F were studied by many authors, see for example [2],
[3], [4] and [5]. J. Friedlander and S. Halperin gave in [2] the characterization
of all rational graded vector spaces V* , for which there exists a space S of
type F with V^ ^ TT^(S) 0 Q in the category of graded spaces.

Suppose that S is simply connected and denote by fIS the loop space
of S . The Samelson product induces on TT^SIS) 0 Q ^ 7T*+i(5) 0 Q the
structure of a graded Lie algebra over rationals which is called the (rational)
homotopy Lie algebra of the space S [8; p.210]. It is natural to ask how
to characterize all graded rational Lie algebras II* for which there exists
a simply connected space S of type F with II* ^ 7^(05) 0 Q in the
category of graded Lie algebras. Unfortunately, this problem seems to have

Key-words : Rational homotopy algebra - Space of type -F - Minimal model.
A.M.S. Classification : 55P62 - 55Q15.
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no reasonable solution (see [5; p.114]). On the other hand, this question
leads to the study of the set fC(W) of all graded Lie algebra structures
on a given graded vector space W , that are the homotopy Lie algebras of
spaces of type F . This set forms a subset of the algebraic variety C(W) of all
graded Lie algebra structures on W (see § 2). We prove, roughly speaking,
that there are (under suitable assumptions) only three possibilities :

• fC(W) = 0 , i.e. no graded Lie algebra structure on W can be
realized by the homotopy Lie algebra of a simply connected space of type
F ,

• fC(W) is a proper, nonempty and Zariski-open subset of C(W) ,
• f^(W) •==• C(W) , i.e. every graded Lie algebra structure on W can

be realized by the homotopy Lie algebra of a simply connected space of
type F .

We also show that these cases are characterized by the combinatorial
condition, similar to the "strong arithmetic condition" of [2; p.117].

1. Preliminaries.

In this paper we adopt the terminology of [12] and [3]. A minimal
algebra (AM..D) is said to be pure, if D^M^) = 0 and ^(M0^) C
^j^-even ̂  pjyg]. por a minimal algebra (AM, d) we define the differential
dp by
d^M^) = 0 , d^M0^) C AM^ and (d-dp^M0^) C A+M^.AM.
The differential dp is called the pure modification of d . If the dimension of
the vector space M is finite, then
(1.1) dim(ff*(AM,d)) < oo if and only if dim(Jf*(AM,dp)) < oo

by [3; Proposition 1]. Let C* be the cochain functor from the category
of differential graded Lie algebras to the category of differential graded
commutative algebras, C* : LDG -> ADGC [12; I.I]. It relates the
minimal model (AM, d) of a simply connected space S and its homotopy
Lie algebra II* by :
(1.2) G*((IL,<9=0))^(AM,d2),
where ds denotes the quadratic part of the differential d [12; p.88].

Let V be a (positively) graded finite dimensional rational vector
space and let x\,..., Xr, yi,..., Vq be a homogeneous basis, deg(a^) = 2a^ ,
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deg(yj) = 2bj— 1 , 1 < i < r , 1 < j < q . The integers &i , . . . , bg; ai,..., Oy
will be called, according to [2], the exponents of the graded space V .

Let [; ] be a graded Lie algebra product (bracket) on a graded vector
space W [12; 0.4]. Denote by sW the suspension of W , i.e. the graded
vector space defined by (sW)p=Wp^ If we write C*((W,[ , ],9==0)) =
(AY, d) then, by definition, the differential d is quadratic and

V = (sWY(= Hom(sTV,Q)) .

Choose a basis x\,..., Xr, y\ 5. •., Vq of V as above and let h\,..., bq^a\,..., Oy.
be the exponents of the space V . Clearly, the pure modification dp of the
differential d is characterized by a sequence </i , . . . ,^g of quadratic poly-
nomials from Q[a;i,..., Xr] , pj; = dp(%) € A(a:i,..., Xr) = Q[a:i,..., Xr] ,
1 < J < 9 • Using [2; Theorem 3] we can easily deduce the following
observation (the proof is given in § 4).

Observation. — Suppose that (W, [ ; ]) is the homotopy Lie alge-
bra of a simply connected space of type F . Then the following condition
must be satisfied (compare with the definition before [2; Theorem 1]) :

for every subsequence A* of (ai,..., dr) of length s (1 < s < r) there
exist at least 5 elements bj of (&i, . . . ,bg) of the form bj = ^ ^fijCii »

aiCA*
where 7^ are non-negative integers and

• either V^ 7^ > 3 ,
o,€A-

• or V^ 7^ = 2 and each quadratic monomial T( (x^3 occurs
Oi€A- o,€A*

in the polynomial gj .

2. Results.

Let V be a finite dimensional rational graded vector space and
&i , . . . , bq, ai,..., a,r its exponents. We shall always assume that a, > 0
and b j > l y l < i < r , l < j < q . Denote by W the desuspension
s-iy* , i.e. the graded space defined by (5~lVtt)p = Vy^ . Clearly
2&i - 2,..., 2bq - 2,2ai - 1,..., 2ar - 1 are the degrees of a homogeneous
basis of W .

Let C(W) be the system of all graded Lie algebra structures on W .
Systems of such a type will be considered as (not necessarily irreducible)
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affine algebraic varieties (= closed algebraic sets) over Q in the same sense
as, for example, in [7]. Similarly, let Cp(W) denote the variety of all graded
Lie algebra products on W satisfying the following "purity" condition :

(2.1)
if x and y are homogeneous and [a?; y] ̂  0 , then
deg(rc) and deg(y) are both odd.

This condition means nothing else than the purity of C'*((W,[;],(?==0)).
Finally, denote by fC(W) (resp. fCp(W)) the system of all graded Lie
algebra structures (resp. graded Lie algebra structures satisfying (2.1)) on
W which can be realized by the homotopy Lie algebra of a simply connected
space of type F .

Write for simplicity B = (&i , . . . , bq) and A = (ai,..., dr) . In the
situation described above we denote, for a positive integer k , by "ACV
the following condition :

for every subsequence A* of A of length s (1 < s ^ r) there exist at
least 5 elements bj of B of the form

^ = ]C n^z,
Oi€A*

where 7ij are non-negative integers and ^ 7ij > k .
Oi€A'-

Remark. — The condition ^AC^ is precisely the "strong arithmetic
condition" introduced in [2], hence the simply connected case of Theorem
1 in [2] reads in the terminology introduced above as follows :

the condition "ACy is satisfied if and only if fC(W) ̂  0 .

Moreover, it easily follows from (1.1) that fC(W) -f- 0 if and only if
fCp(W) i=- 0 (see also the following paragraphs). Notice also that the Jacobi
identity in graded Lie algebras satisfying (2.1) is trivial, hence Cp(W) is
in fact isomorphic with the affine space Q4 for suitable d . Therefore each
Zariski-open subset of Cp(W) is dense.

THEOREM 1. — There are only three possibilities :

• First case : fCp(W) is empty

• Second case: fCp(W) is a nonempty, Zariski-open (and hence dense)
subset of£p(W) , but f£p(W) ̂  Cp(W)

• Third case : fCp(W) = £p(W) .
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These cases are characterized as follows :

• First caf.e is equivalent with "non AC'2 "

• Second case is equivalent with "AC^ et non ACz"

• Third case is equivalent with "ACs " .

This theorem is proved in § 4. Note that the conditions "ACjb" are
easily verifiable. From the previous theorem and the Observation we easily
obtain :

COROLLARY 2. — If the condition "AC^9 is satisfied, then each
pure (= satisfying (2.1)) Lie algebra product on W can be realized by
the homotopy Lie algebra of a simply connected space of type F . If the
condition "AC^ " is not satisfied, then no simply connected space of type F
has the homotopy Lie algebra isomorphic with the algebra (W, [ ; ] = 0) .

Let us denote by M(V) (resp. Mp(V)) the affine variety of all minimal
(resp. pure minimal) algebras of the form (AV, d) . We can define the map
F : M(V) ̂  C(W) by F((AV, d)) = (TV, [ , ]) , where the algebra (TV, [ ; ])
is characterized by C7*((TV, [ ; ],<9 = 0)) = (AY, da) . The restriction gives
the map Fp : Mp(V) -> Cp(W) . Define the map p : C(W) -^ Cp(W) by
P(W [ ; ] ) ) = (W, [ ; }p) , where [x',y}p = [x,y\ for deg(a:) and deg(t/) odd
and [x',y}p = 0 otherwise, x,y € W are homogeneous elements. Finally,
we denote by P : M(V) -^ Mp(V) the map P((AV,d)) = (AY, dp) (dp is
defined in § 1). Our maps form the following commutative diagram :

jC(W) ^- M(V)
P I P i
Cp(W) ^ Mp(V)

THEOREM 3. — Let 4.min{2a,,26y - 1; 1 <, i <, r, 1 <, j <, q} >
max{2ai,2bj - 1; 1 < i < r, 1 < j < q} + 2 or, more generally, let the
canonical map from M(V) to the pullback of the diagram

C(W)
P I
Cp(W) ^- Mp(V)

be an epimorphism. Then the classification given in Theorem 1 is valid also
for fC(W) in C(W) .

The previous theorem contains the following interesting information.
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COROLLARY 4. — Suppose that the condition "AC^7 is satisfied
and that 4. min{deg(i;) ; v € V is homogeneous } > max{deg(v) ; v € V is
homogeneous} +2 . Then each Lie algebra structure on the vector space W
can be realized by the homotopy Lie algebra of a simply connected space
of type F .

THEOREM 5. — Let the variety M(V) be irreducible. Then the
condition "AC^" is satisfied if and only if the set f£(W) is dense in C(W) .

Of course, if the condition "ACY5 is not satisfied, then the set f£(W)
is empty (see the remark before Theorem 1). Our theorems are proved
in § 4. We give the example showing the necessity of the irreducibility
assumption in the last one.

Let V be the space homogeneously generated by the set {y\, y^, 3/3, x} ,
deg(2/i) = 3 , deg(y2) = 11 , deg(y3) = 13 and deg(a;) = 4 . Then clearly
M(V) ̂  {(a, b) € Q2; ab = 0} and this set is reducible. It is easy to see that
C(W) ̂  Q and that f£(W) = Point, although the condition "ACs" (and
hence also "ACs" ) is satisfied. It is interesting to compare this with the
situation of Theorem 1, where "AC'S" implies fCp(W) = Cp(W) . We see
that the couples (£{W),fC(W)) and (Cp(W),fCp(W)) have, in general,
quite different properties.

On the other hand, there are interesting examples when Theorem
5 is applicable. For example, if V is the graded space based by the set
{2/1,3/2,2/2,2/3,^} , degQ/i) = 3 , deg^) = deg^s) = 11 , deg^s) = 13 and
deg(a?) = 4 , then clearly M(V) ̂  {(a, &, c, d) € Q4; ac+ bd = 0} which can
be shown to be irreducible. By Theorem 5, fC{W) is dense in C(W) = Q2

(it can be shown even that fC(W) = C(W)).

3. Main lemma.

In this paragraph we deduce the lemma, which forms the basis tool for
proving our theorems. We adopt the usual terminology of [6], [9] and [10].
All objects are considered over an arbitrary (not necessary algebraically
closed) field k of characteristic zero. Let a?i,. . . ,a?T.,oi,. . . ,a3 be graded
indeterminates, deg(xi) > 0 , deg(a^) = 0 f o r l < i < r , l < j < 5 . We
shall denote for brevity x = (a:i,..., Xr) and a = (ai,..., a,s) . For example,
the graded polynomial ring k[x\^..., Xr, ai,..., ds} will be denoted simply
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by k[x, a] . Let A be the affine space with "coordinates" ai,..., a,s :
A={(ai , . . . ,a ,) ; a^ € fe , 1 < j < s} ̂  k8 .

For a point a € A and an ideal I C k[x, a} let la be the ideal in k[x] defined
by

Ia={f(x,a)',f(x,a)el}.
Finally, for a subset X C A write

X1 = {a € X;dimfc(fc[a;]/Ja) < 00} .
The main result of this paragraph reads as follows :

MAIN LEMMA. — Suppose that the ideal I is homogeneous (i.e.
generated by a set of homogeneous elements, see [10; chap. VII]) in the
graded ring k[x,d\. Then

A1 = {a € A;dimfc(Jfc[:r]/Ja) < 00}
is a (possibly empty) Zariski-open subset of A .

It can be easily shown that the lemma is not valid without the
homogeneity assumption. Also the assumption deg(a^) > 0 , deg(a^) = 0 ,
1 < i < r , 1 < j < s , is necessary.

Fix an algebraic closure k of the field k . The inclusion k C k defines
the natural injection k[x, a] <—^ k[x, a] and we can clearly consider all objects
over k ; I generates the ideal I C k[x, a] and the "fc-version" of A is :

A={(ai,...,a^;aj € fe,l < j < 5} ̂ F .

Then again A C A . We can easily verify that for each a € A :

dimk(k[x]/Ia) < oo if and only if dim-j.(k[x\/Iot) < oo ,

hence A1 = A n A . Because A H U is clearly Zariski-open (over k) in
A for each Zariski-open (over k) subset U of A , it is sufficient to prove
the lemma under the assumption that k is algebraically closed. First step
towards the proof of Main Lemma is the following proposition.

PROPOSITION 1. — For each Zariski-closed subset F of the a&ne
space A either F1 = 0 or F1 contains a nonempty subset, Zariski-open in
F .

Proof of the proposition. — Because clearly (Fi U F^Y = F{ U F^ ,
we can always suppose that the set F is irreducible, hence the ideal

J = {f € fc[a]; f(a) = 0 for each a € F}
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is prime. Denote by B the affine space

B = {(:ri,...,a;r,ai,...,a5);a;,,a^ € fc, 1 < z < r,l < j < s}
and let P : B —»• A be the natural projection. As usually, for an ideal K of
a polynomial ring, denote by Z(K) the zero set of K in the corresponding
affine space [6; I.I]. We know that [2; Remark 1.9] :

(3.1) dimk(k[x]/Ia) < oo if and only if the set Z(Ia) is finite.
Denote M = Z(I) n P-^F) . Because clearly Z(Ia) = Z(I) n P~l(a) , we
obtain easily from (3.1) that

(3.2) F1 = {a € F; P~1^) H M is finite}.

The ideal J can be considered as a subset of fc[a?, a] and it makes sense
to denote by D the ideal generated by I and J in k[x,a] . Note that
M = Z(P) . If we decompose the algebraic set M into the union of
irreducible components, M = M\ U ... U Mm , then

Qi = {f € fc[a;, a]; /(Q = 0 for each $ € MJ

are the associated primes of the ideal D , 1 ̂  % ^ m . Similarly as above
we obtain

(3.3) F^ = {a € F; P'^a) n Mi is finite} , 1 <, i <, m ,
hence it is clear from the description (3.2) of the set F1 that

F1 = F| F^1 .
Ki^m

The set F is supposed to be irreducible, hence every nonempty Zariski-open
subset of F is dense in F and it is clearly sufficient to prove that for each
i , 1 < i < m ,

(3.4) either FQi = 0 or FQi contains a nonempty subset,
Zariski-open in F .

Fix i , 1 < i < m . Because the ideals I and J are homogeneous,
the ideal D = (J,J) is homogeneous, too. By [10; p.154] each associated
prime Qi of D is also homogeneous, hence Qi is generated by a system of
the form

^i (rr, a),..., gy,(x, a), fai (a),..., hy(a) ,

where ^ € fc[a:,a] are homogeneous of positive degrees and hj € k[a] are
homogeneous of degree zero, l < : t < u ^ l < j < v (because deg(xk) > 0 ,
no Xk can occur in a polynomial of degree zero, 1 < k < r). This observation
is the key point of our proof.
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Denote by H the ideal generated in k[a] by the polynomials Ai h
We claim that P(M,) = Z(H) . Indeed, because the polynomials g^..., ̂
have positive degrees, they are zero on elements of the form (0,a) for
each a € A . Consequently, (0,a) e Z(Q,) = M, provided a e Z(JT)
Because a = P(0,a) , we see that Z(H) c P(M,) . On the other hand, if
($,a) € M, = Z(Q,) then clearly h^a) = 0 for each j , 1 < j < y , and
a = P($,a) e Z(Jf) , which proves the inclusion P(M,) c Z(H) .

By definition, P(M,) c F and we distinguish the following two cases :

A. P(Mi) ^ F . In this case, the set U, = F\Z(H) is nonempty and
Zariski-open in F . Because P-^a) n M, = 0 for each a e ̂  , E7, c F^
by (3.3) and the condition (3.4) is satisfied.

B. P(M,) = F . Denote F ' = {(0,a);a e F} . Clearly F' c M,
hence dim(F) = dim(F/) < dim(M,) . The restriction P\M, defines the
map TT : Mi -^ F , which is epic by our assumption. Again we distinguish
two cases :

B.I. dim(M,) > dim(F) . By the definition of the dimension, the
set TT \a) is finite if and only if din^Tr-^a)) = 0 . The theorem [11; 1.6.
Theorem 7] (compare also [1; AG 10.1]) says that the set

F^ = {a € ^din^TT-^a)) == 0}
is empty and (3.4) is valid.

B.2. dim(M,) = dim(JP) . Because F ' c M, and dim(F') =
dim(M,) , from the irreducibility of the set At, we see that F ' = M, ,
hence Tr-^a) = {(0,a)} . We have F^ = F and (3.4) is again satisfied!
Our proposition is proved.

Proof of Main Lemma. — Suppose we have constructed a sequence
A! ^ A^ i? • • • ^ Ak , k > 1 , of closed subsets of A with the property
(A \ Ak) C A1 . If A{ == 0 then A1 = (A \ Ak) is open. In the opposite
case there exists, by Proposition 1, a nonempty open subset Uk C Ak with
Uk C A{ . In this case we define Ajb+i = (Ak \ Uk) . The set A^i is
closed, Ak ^ Afc+i and (A \ A^i) C A1 . Since the topological space A
is Noetherian [6; 1.4.7], this procedure gives rise to a closed Am C A with
(A \ Am) = A1 . The lemma is proved.
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4. Remaining proofs.

In this paragraph we prove the theorems of § 2. We adopt the notation
introduced in previous paragraphs.

Let fMp(V) denote the subset of Mp(V) consisting of all pure
minimal algebras having finite dimensional cohomology. It is not hard to
deduce from (1.1) that f£p(W) = Fp(fMp(V)) . The algebras belonging
to Mp(V) are of the form

(A(a;i,...,a;r,i/i,...,2/g),d) , deg(^) = 2a^ , deg(^) = 2^ - 1 ,

with d(xi) = 0 and d(yj) € A(a:i,...,a;r) = <?[^i,...,a;r] for 1 < i < r ,
1 <: Jlf < 9 • Thus each element of Mp(V) is characterized by a sequence
/i,...,/g of polynomials, fj = d(^) e Q[a:i,.. .,a:r] , 1 < J < Q • Our
minimal algebra clearly belongs to /.Mp(V) if and only if

dimQ(Q[a;i,...,^]/(/i,...,/r)) < oo , see also [2].

PROPOSITION 2.

a) "fMp^V) = 0" is equivalent with "non AC^\

b) "fMp(y) is a nonempty subset, Zariski-open in Mp(V)" is
equivalent with "AC'2",

c) "Fp(fMp(V)) = Cp(Wy1 is equivalent with "AC^.

Proof of a). — This equivalence is in fact the main result of [2]; see
also the note before Theorem 1.

Proof of b). — For each j , 1 <: j <: q , denote by $^ the family of
all at least quadratic (i.e. of length > 2) monomials a € Q[xi,..., Xr] with
deg(cr) = 2bj . Write <I>j; = {a{,..., cr^.} and denote

^(a;,aJ)=^(a:l,...,^,ai,...,a^.)= ^ a '̂ , Kj<q.
Ks<kj

Then ^^(y) is isomorphic to the aflSne space A with the "coordinates"
a\,..., a\ ,..., a?,..., a\ in the evident sense. If we put deg(a^) = 0 for
l ^ ^ ^ l ^ ^ f c s , then I = (/i,..., fq) is a homogeneous ideal in the
graded polynomial ring Q[x\,..., Xr, a\,..., a^,..., a?,..., a^J . Applying
Main Lemma to this situation we see that the set A1 , which is clearly
isomorphic with fMp(V) , is Zariski-open in A ^ Mp{V) . Combining
this with a) we obtain the requisite equivalence.
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Proof of c). — The set Cp(W) can be identified with the subset of
Mp(V) consisting of all minimal algebras with pure quadratic differential in
the natural way. Under this identification Fp acts as taking the quadratic
part and UFp{fMp{y)) = Cp(W)" means that for each pure quadratic
differential 6 on AV there exists a pure minimal algebra (AV, d) € f<Mp(V)
such that the quadratic part da of the differential d is equal to S .
Especially the equation Fp(fMp(V)) =? Cp(W) implies the existence of
(AV,d) € fMp(V) with trivial quadratic part. Then "ACs" must be
satisfied by Observation in § 1.

On the other hand, let "AC'S" be satisfied and let ^j be, similarly
as in the proof of b), the set of all at least cubic (= of length > 3)
monomials p, € Q[a;i,...,:Cr] with deg(^) = 2bj , 1 < j; < q . The
families -0i,. . . ,V?g satisfy the condition P.O. of [2; p.119] and there is a
sequence /i,..., fq 6 Q[x-t,..., Xr] of polynomials such that each fj is a
linear combination of monomials from ̂  and

dimo(0[a;i,...,^]/(/i,...,^))<oo [2; Theorem 3].

By the definition of ̂  all the polynomials /i,..., fq have zero quadratic
part.

Now, let (AY, 6) be a pure minimal algebra with quadratic differential
and denote gj = 6(yj) € Q[a;i,... ,Xr} , 1 <: j < q . Then the pure
differential d , defined for each sequence ai,...,ag of nonzero rationals
by

d { y j ) = ( a j ) - l ' f j + g j , K j < q ,

has the quadratic part equal to 6 . By the following lemma we can find
the rationals ai,..., dq such that (AY, d) € f^lp(V) which completes our
proof.

LEMMA.— Let /i,...,/g,^i,...,^g 6 0[a?i,...,a;r] be homoge-
neous elements and let dimQ(Q[rci,... ,^r]/(/i5 - - • 5 fq)) < co . Then there
exists a sequence ai,..., o.q of nonzero rational numbers such that

dim^OIa;!,...,^]/^!)"'1./! ̂ -^i,...^)"1.^ + 9q)) < oo .

Proof of the lemma. — For 1 < i < q define hi(x,o) = fi(x) +
o'i9i(x) . If we define deg(a^) = 0 for 1 < i < q , then fai , . . . , / ig are
homogeneous elements of the polynomial ring k[x\,..., Xr, €LI ,.. • , flg] ; let
us denote by J the ideal (/ii,..., hq) . If we abbreviate by A the affine space
A = {(ai , . . . , dq) ; Oi € Q , 1 < z ^ g} , the set A1 is Zariski-open in A by
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Main Lemma. By our assumption, dimQ(fc[a;i,..., a^]/(/i,..., fq)) < oo ,
hence (0,..., 0) € A1 and A1 is nonempty. Clearly there exists a point
(o;i,..., aq) € A1 having all coordinates different from zero. Because

(fl + Q^i, . . . , fq + Oqgq) = ((Oi)-1/! -+- ^1, . . . , (oiq)~1 fq + ̂ ) ,

our point (0:1,... ,0g) has the requisite properties.

Proof of Theorem 1. — As we remarked in the proof of Proposition
2, the affine space Cp(W) can be identified with an affine subspace of the
affine space Mp(V) , under this identification Fp : Mp(V) -^ Cp(W) is
simply the canonical projection, hence an open epimorphism. Theorem 1
now follows from the classification given in Proposition 2.

Proof of Theorem 3. — We easily deduce from (1.1) that f£(W) =
FP-^fMp^V)) . Taking the space {(x,y) e £(W) x Mp(V)',p(x) =
Fp(y)} as the pullback of the diagram we see that if the canonical map
from M(V) to the pullbadc is epic, then f£(W) = p^^Cp^W)) . The
theorem now follows from Theorem 1 and from the evident fact that
p : C(W) —>• Cp(W) is a continuous epimorphism.

For p > 0 the set f^V = {v\ A... A Vp; 1:1,..., Vp € V} forms a vector
subspace of AY and C APV ^ AV (we put A°y = Q). Let q? : AV -^ A^V

p>o
be the projection. For a linear endomorphism G of AV and % > 2 denote by
Gi : AV -> AV the linear map defined by G^V = 9p+z-i o G . Finally,
for j > 1 denote G>^ = V^ Gi .

i>j

The canonical map from M(V) to the pullback is clearly epic if and
only if for each pure minimal differential d on AV and for each quadratic
differential D on AV whose pure modification Dp is equal to the quadratic
part ds of d there exists a differential 6 on AV whose pure modification is
equal to d and whose quadratic part is equal to D .

Let D and d be as above. Define the derivation 6 by 6 = D 4- d>2 •

Then clearly 62 = D2 -h (^)>3 = (^^s and it is not hard to verify
that under the assumption

4.min{deg(v);v € V is homogeneous}
> max{deg(v);z; C V is homogeneous} + 2

is always (^)>3 =0 , consequently 6 is a differential satisfying 6p = d and
<!)2=-D.
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Proof of Theorem 5. — Recall that fC(W) = FP-l(fMp(Y)) (see
the proof of Theorem 3). The map P : M(V) —^ Mp(V) is continuous and
epic and the set P"^!/) is, because of the irreducibility of M(V) , dense
for each nonempty open subset U C Mp(V) . The map F : M(V) -> C(W)
is also continuous and epic and the rest follows from Proposition 2.

Proof of Observation. — Let Slj be, for 1 <, j <; q , the system of all
monomials uj € Q[x^,..., Xr] with deg(^) = 2bj , such that

• either uj is at least cubic (= of length > 3),

• or uj is quadratic and it occurs in the polynomial gj .
Suppose that there exists (AV,D)efM(V) with C^(W,[ ; ],9=0))

= (AY, D^) . Then each polynomial fj = Dp(yj) must be clearly a rational
linear combination of elements of Slj; , 1 ̂  j < q . Being (TV,[ ; ]) the
homotopy Lie algebra of a space of type F , by [2; Theorem 3] the systems
HI, . . . , fig must satisfy the condition P.O. of [2; p. 119]. But P.O. for
QI, ..., Q,q is clearly equivalent with the condition given in Observation.

I would like to take this opportunity to thank Professor J.-C. Thomas
for his helpful advice. Also conversations with my friend Honza Nekovar
were helpful in my thinking about this paper.
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