On associe à une fonction , plurisousharmonique dans de croissance logarithmique à l’infini, la fonction de Robin
dans l’hyperplan à l’infini. On étudie , la classe des fonctions de la forme et , la classe des fonctions pour lesquelles la fonction n’est pas identiquement . On obtient une formule intégrale qui relie la mesure de Monge-Ampère sur l’espace et la fonction de Robin. Sous titre d’application, on donne un critère sur les mesures de Monge-Ampère d’une suite de fonctions qui est nécessaire et suffisante pour la convergence des fonctions de Robin . Par conséquent, on trouve qu’un ensemble polaire est contenu dans pour une fonction , donc que l’ensemble de propagation , l’intersection des ensembles contenant , est polaire. Soit une hypersurface algébrique, , alors ne contient pas .
To a plurisubharmonic function on with logarithmic growth at infinity, we may associate the Robin function
defined on , the hyperplane at infinity. We study the classes , and (respectively) of plurisubharmonic functions which have the form and (respectively) for which the function is not identically . We obtain an integral formula which connects the Monge-Ampère measure on the space with the Robin function on . As an application we obtain a criterion on the convergence of the Monge-Ampère measures of a sequence of functions in which is equivalent to the convergence of the associated Robin functions. As a consequence, it is shown that a polar set is contained in for some , and so the polar propagator , given as the intersection of the sets containing , is polar. Ir is an algebraic hypersurface which is disjoint from , then cannot contain .
@article{AIF_1988__38_4_133_0, author = {Bedford, E. and Taylor, B. A.}, title = {Plurisubharmonic functions with logarithmic singularities}, journal = {Annales de l'Institut Fourier}, pages = {133--171}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {38}, number = {4}, year = {1988}, doi = {10.5802/aif.1152}, zbl = {0626.32022}, mrnumber = {90f:32016}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1152/} }
TY - JOUR AU - Bedford, E. AU - Taylor, B. A. TI - Plurisubharmonic functions with logarithmic singularities JO - Annales de l'Institut Fourier PY - 1988 SP - 133 EP - 171 VL - 38 IS - 4 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1152/ DO - 10.5802/aif.1152 LA - en ID - AIF_1988__38_4_133_0 ER -
%0 Journal Article %A Bedford, E. %A Taylor, B. A. %T Plurisubharmonic functions with logarithmic singularities %J Annales de l'Institut Fourier %D 1988 %P 133-171 %V 38 %N 4 %I Institut Fourier %C Grenoble %U https://aif.centre-mersenne.org/articles/10.5802/aif.1152/ %R 10.5802/aif.1152 %G en %F AIF_1988__38_4_133_0
Bedford, E.; Taylor, B. A. Plurisubharmonic functions with logarithmic singularities. Annales de l'Institut Fourier, Tome 38 (1988) no. 4, pp. 133-171. doi : 10.5802/aif.1152. https://aif.centre-mersenne.org/articles/10.5802/aif.1152/
[AT] Comparison of two capacities in ℂn, Math. Z., 186 (1984), 407-417. | MR | Zbl
and ,[BT 1] A new capacity for plurisubharmonic functions, Acta Math., 149 (1982), 1-40. | MR | Zbl
and ,[BT 2] Fine topology, Silov boundary, and (ddc)n, J. Funct. Anal., 72 (1987), 225-251. | MR | Zbl
and ,[Car] Selected Problems in Exceptional Sets, Van Nostrand Math. Studies # 13, D. Van Nostrand (1968). | Zbl
,[Ceg] An estimate of the complex Monge-Ampere operator. Analytic functions. Proceedings, Blazejwko 1982. Lecture Notes in Math., 1039, pp. 84-87. Berlin, Heidelberg, New York, Springer, 1983. | Zbl
,[D 1] Mesure de Monge-Ampère et caractérisation des variétés algébriques affines, mémoire (nouvelle série) n° 19, Soc. Math. de France, 1985. | Numdam | MR | Zbl
,[D 2] Mesures de Monge-Ampère et mesures pluriharmoniques, Math. Z:, 194 (1987), 519-564. | MR | Zbl
,[F] Geometric Measure Theory, Springer-Verlag, New York, 1969. | MR | Zbl
,[J] On the equivalence between locally polar and globally polar sets for plurisubharmonic functions on ℂn, Ark. Math., 16 (1978), 109-115. | MR | Zbl
,[Km] Extremal plurisubharmonic functions and invariant pseudo-distances, Bull. Soc. Math. France, 113 (1985), 123-142. | Numdam | MR | Zbl
,[K 1] Logarithmic capacity in ℂn, to appear in Ann. Pol. Math. | Zbl
,[K 2] On capacities associated to the Siciak extremal function (preprint). | Zbl
,[Lp 1] La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France, 109 (1981), 427-474. | Numdam | MR | Zbl
,[Lp 2] Solving the degenerate Monge-Ampere equation with one concentrated singularity, Math. Ann., 263 (1983), 515-532. | MR | Zbl
,[L] Capacities in several complex variables, Dissertation, The University of Michigan, 1984.
,[Sa] Plurisubharmonic measures and capacities on complex manifolds, Russian Math. Surveys, 36 (1981), 61-119. | MR | Zbl
,[Si 1] Extremal plurisubharmonic functions in ℂn, Ann. Polon. Math., 39 (1981). | MR | Zbl
,[Si 2] Extremal plurisubharmonic functions and capacities in ℂn, Sophia University, Tokyo, 1982. | Zbl
,[Si 3] On logarithmic capacities and pluripolar sets in ℂn (preprint).
,[So] Relations entre différentes notions d'ensembles pluripolaires complets dans ℂn, Thèse, L'Université Paul Sabatier de Toulouse, 1987.
,[T] An estimate for an extremal plurisubharmonic function on ℂn, Séminaire P. Lelong, P. Dolbeault, H. Skoda, 1982-1983, Lectures Notes in Math., 1028 (1983), 318-328. | MR | Zbl
,[Z] Transfinite diameter Čebyšev constants, and capacity for compacta in ℂn, Math. USSR Sbornik, 25 (1975), 350-364. | Zbl
,[Ze] Ensembles pluripolaires exceptionnels pour croissance partielle des fonctions holomorphes, preprint. | Zbl
,Cité par Sources :