An F. and M. Riesz theorem for bounded symmetric domains
Annales de l'Institut Fourier, Volume 37 (1987) no. 2, pp. 139-150.

We generalize the classical F. and M. Riesz theorem to metrizable compact groups whose center contains a copy of the circle group. Important examples of such groups are the isotropy groups of the bounded symmetric domains.

The proof uses a criterion for absolute continuity involving L p spaces with p<1: A measure μ on a compact metrisable group K is absolutely continuous with respect to Haar measure dk on K if for some p<1 a certain subspace of L p (K,dk) which is related to μ has sufficiently many continuous linear functionals to separate its points. For abelian K this criterion is due to J.H. Shapiro.

Le théorème de F. et M. Riesz classique est étendu aux groupes compacts et métrisables dont le centre contient une copie du groupe du cercle. Des exemples importants de tels groupes sont les groupes d’isotropie des domaines symétriques bornés.

La preuve se sert d’un critère pour la continuité absolue qui emploie les espaces L p avec p<1 : une mesure μ sur un groupe K métrisable et compact est absolument continue par rapport à la mesure de Haar dk de K si, pour un p<1, un certain sous-espace de L p (K,dk), dépendant de μ, a un nombre suffisant de fonctionnelles linéaires continues pour séparer les points. Si K est abélien ce critère est dû à J.H. Shapiro.

@article{AIF_1987__37_2_139_0,
     author = {Brummelhuis, R. G. M.},
     title = {An {F.} and {M.} {Riesz} theorem for bounded symmetric domains},
     journal = {Annales de l'Institut Fourier},
     pages = {139--150},
     publisher = {Imprimerie Durand},
     address = {28 - Luisant},
     volume = {37},
     number = {2},
     year = {1987},
     doi = {10.5802/aif.1090},
     zbl = {0607.43002},
     mrnumber = {89c:43002},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1090/}
}
TY  - JOUR
TI  - An F. and M. Riesz theorem for bounded symmetric domains
JO  - Annales de l'Institut Fourier
PY  - 1987
DA  - 1987///
SP  - 139
EP  - 150
VL  - 37
IS  - 2
PB  - Imprimerie Durand
PP  - 28 - Luisant
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.1090/
UR  - https://zbmath.org/?q=an%3A0607.43002
UR  - https://www.ams.org/mathscinet-getitem?mr=89c:43002
UR  - https://doi.org/10.5802/aif.1090
DO  - 10.5802/aif.1090
LA  - en
ID  - AIF_1987__37_2_139_0
ER  - 
%0 Journal Article
%T An F. and M. Riesz theorem for bounded symmetric domains
%J Annales de l'Institut Fourier
%D 1987
%P 139-150
%V 37
%N 2
%I Imprimerie Durand
%C 28 - Luisant
%U https://doi.org/10.5802/aif.1090
%R 10.5802/aif.1090
%G en
%F AIF_1987__37_2_139_0
Brummelhuis, R. G. M. An F. and M. Riesz theorem for bounded symmetric domains. Annales de l'Institut Fourier, Volume 37 (1987) no. 2, pp. 139-150. doi : 10.5802/aif.1090. https://aif.centre-mersenne.org/articles/10.5802/aif.1090/

[1] A. B. Aleksandrov, Existence of inner functions in the unit ball, Mat. Sb., 118 (160), N2 (6) (1982), 147-163. | MR: 83i:32002 | Zbl: 0503.32001

[2] A. B. Aleksandrov, Essays on non locally convex Hardy classes, Complex Analysis and Spectral theory, Seminar, Leningrad 1979/1980, V. P. Havin and N. K. Nikol'skii (ed.), 1-89. | MR: 84h:46066 | Zbl: 0482.46035

[3] P. L. Duren, Theory of Hp Spaces, Acad. Press, New York, 1970. | MR: 42 #3552 | Zbl: 0215.20203

[4] S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Acad. Press, New York, 1978. | Zbl: 0451.53038

[5] Y. Kanjin, A convolution measure algebra on the unit disc, Tohoku Math. J., 28 (1976), 105-115. | MR: 53 #1178 | Zbl: 0321.43011

[6] A. Koranyi, Holomorphic and harmonic functions on bounded symmetric domains, C.I.M.E. summer course on Geometry of Bounded Homogeneous Domains, Cremonese, Roma, 1968, 125-197. | MR: 38 #6098 | Zbl: 0167.06702

[7] W. Rudin, Function Theory in the Unit Ball of Cn, Springer Verlag, Berlin, 1980. | MR: 82i:32002 | Zbl: 0495.32001

[8] W. Rudin, Inner functions in the unit ball of Cn, J. Funct. Anal, 50 (1983), 100-126. | MR: 84i:32007 | Zbl: 0554.32002

[9] W. Rudin, Fourier Analysis on Groups, Interscience, John Wiley, 1960.

[10] W. Rudin, Trigonometric series with gaps, J. Math. Mech., 9 (1960), 203-228. | MR: 22 #6972 | Zbl: 0091.05802

[11] J. H. Shapiro, Subspaces of Lp(G) spanned by characters, 0 < p < 1, Israel J. Math., 29, Nos 2-3 (1978), 248-264. | MR: 57 #17123 | Zbl: 0382.46015

[12] W. Schmid, Die Randwerte holomorpher Funktionen auf hermitesch symmetrischen Raumen, Invent. Math., 9 (1969), 61-80. | MR: 41 #3806 | Zbl: 0219.32013

[13] E. M. Stein, Note on the boundary values of holomorphic functions, Ann. of Math., 82 (1965), 351-353. | MR: 32 #5923 | Zbl: 0173.09004

[14] S. Vági, Harmonic analysis on Cartan and Siegel domains, M.A.A. Studies in Math., vol. 13 : Studies in Harmonic Analysis, J. Ash (ed.), 257-309. | MR: 57 #16719 | Zbl: 0352.32031

Cited by Sources: