Deformations of coherent foliations on a compact normal space
Annales de l'Institut Fourier, Volume 37 (1987) no. 2, pp. 33-48.

An universal analytic structure is construted on the set of (singular) holomorphic foliations on a normal compact space. Such a foliation is by definition a coherent subsheaf of the holomorphic tangent sheaf stable by the Lie-bracket

On munit d’une structure analytique universelle l’ensemble des feuilletages holomorphes sur un espace compact normal. Par définition un feuilletage holomorphe est un sous-faisceau cohérent du faisceau tangent holomorphe stable par le crochet de Lie.

@article{AIF_1987__37_2_33_0,
     author = {Pourcin, Genevi\`eve},
     title = {Deformations of coherent foliations on a compact normal space},
     journal = {Annales de l'Institut Fourier},
     pages = {33--48},
     publisher = {Imprimerie Durand},
     address = {28 - Luisant},
     volume = {37},
     number = {2},
     year = {1987},
     doi = {10.5802/aif.1085},
     zbl = {0587.32037},
     mrnumber = {88k:32057},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1085/}
}
TY  - JOUR
TI  - Deformations of coherent foliations on a compact normal space
JO  - Annales de l'Institut Fourier
PY  - 1987
DA  - 1987///
SP  - 33
EP  - 48
VL  - 37
IS  - 2
PB  - Imprimerie Durand
PP  - 28 - Luisant
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.1085/
UR  - https://zbmath.org/?q=an%3A0587.32037
UR  - https://www.ams.org/mathscinet-getitem?mr=88k:32057
UR  - https://doi.org/10.5802/aif.1085
DO  - 10.5802/aif.1085
LA  - en
ID  - AIF_1987__37_2_33_0
ER  - 
%0 Journal Article
%T Deformations of coherent foliations on a compact normal space
%J Annales de l'Institut Fourier
%D 1987
%P 33-48
%V 37
%N 2
%I Imprimerie Durand
%C 28 - Luisant
%U https://doi.org/10.5802/aif.1085
%R 10.5802/aif.1085
%G en
%F AIF_1987__37_2_33_0
Pourcin, Geneviève. Deformations of coherent foliations on a compact normal space. Annales de l'Institut Fourier, Volume 37 (1987) no. 2, pp. 33-48. doi : 10.5802/aif.1085. https://aif.centre-mersenne.org/articles/10.5802/aif.1085/

[1] P. Baum, Structure of foliation singularities, Advances in Math., 15 (1975), 361-374. | MR: 51 #13298 | Zbl: 0296.57007

[2] G. Bohnhorst and H. J. Reiffen, Holomorphe blatterungen mit singularitäten, Math. Gottingensis, heft 5 (1985).

[3] H. Cartan, Faisceaux analytiques cohérents, C.I.M.E., Edizioni Cremonese, 1963. | Zbl: 0178.42701

[4] A. Douady, Le problème des modules pour les sous-espaces analytiques..., Ann. Inst. Fourier, XVI, Fasc. 1 (1966), 1-96. | Numdam | Zbl: 0146.31103

[5] B. Malgrange, Frobenius avec singularités-codimension 1, Pub I.H.E.S., n°46 (1976). | Numdam | MR: 58 #22685a | Zbl: 0355.32013

[6] G. Pourcin, Sous-espaces privilégiés d'un polycylindre, Ann. Inst. Fourier, XXV, Fasc. 1 (1975), 151-193. | Numdam | MR: 52 #11118 | Zbl: 0297.32010

[7] Y. T. Siu et G. Trautmann, Gap-sheaves and extension of coherent analytic subsheaves, Lect. Notes, 172 (1971). | MR: 44 #4240 | Zbl: 0208.10403

[8] T. Suwa, Singularities of complex analytic foliations, Proceedings of Symposia in Pure mathematics, Vol. 40 (1983), Part.2 | MR: 85a:32029 | Zbl: 0552.32008

Cited by Sources: