A new construction of p-adic L-functions attached to certain elliptic curves with complex multiplication
Annales de l'Institut Fourier, Volume 36 (1986) no. 4, pp. 31-68.

In this paper we apply the results of our previous article on the p-adic interpolation of logarithmic derivatives of formal groups to the construction of p-adic L-functions attached to certain elliptic curves with complex multiplication. Our results are primarily concerned with curves with supersingular reduction.

Dans cet article nous utilisons les résultats de notre article précédent sur l’interpolation p-adique des dérivées logarithmiques des groupes formels dans le but de construire des fonctions L p-adiques attachées à certaines courbes elliptiques à multiplication complexe. Nos résultats portent notamment sur les courbes à réduction supersingulière.

@article{AIF_1986__36_4_31_0,
     author = {Boxall, John L.},
     title = {A new construction of ${p}$-adic $L$-functions attached to certain elliptic curves with complex multiplication},
     journal = {Annales de l'Institut Fourier},
     pages = {31--68},
     publisher = {Imprimerie Durand},
     address = {28 - Luisant},
     volume = {36},
     number = {4},
     year = {1986},
     doi = {10.5802/aif.1068},
     zbl = {0608.14015},
     mrnumber = {88c:11036},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1068/}
}
TY  - JOUR
TI  - A new construction of ${p}$-adic $L$-functions attached to certain elliptic curves with complex multiplication
JO  - Annales de l'Institut Fourier
PY  - 1986
DA  - 1986///
SP  - 31
EP  - 68
VL  - 36
IS  - 4
PB  - Imprimerie Durand
PP  - 28 - Luisant
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.1068/
UR  - https://zbmath.org/?q=an%3A0608.14015
UR  - https://www.ams.org/mathscinet-getitem?mr=88c:11036
UR  - https://doi.org/10.5802/aif.1068
DO  - 10.5802/aif.1068
LA  - en
ID  - AIF_1986__36_4_31_0
ER  - 
%0 Journal Article
%T A new construction of ${p}$-adic $L$-functions attached to certain elliptic curves with complex multiplication
%J Annales de l'Institut Fourier
%D 1986
%P 31-68
%V 36
%N 4
%I Imprimerie Durand
%C 28 - Luisant
%U https://doi.org/10.5802/aif.1068
%R 10.5802/aif.1068
%G en
%F AIF_1986__36_4_31_0
Boxall, John L. A new construction of ${p}$-adic $L$-functions attached to certain elliptic curves with complex multiplication. Annales de l'Institut Fourier, Volume 36 (1986) no. 4, pp. 31-68. doi : 10.5802/aif.1068. https://aif.centre-mersenne.org/articles/10.5802/aif.1068/

[1] J. L. Boxall, p-adic Interpolation of Logarithmic Derivatives Associated to Certain Lubin-Tate Formal Groups, Ann. Inst. Fourier, Grenoble, 36, 3 (1986), to appear. | Numdam | MR: 88f:11113 | Zbl: 0587.12007

[2] J. L. Boxall, On p-adic L-functions Attached to Elliptic Curves with Complex Multiplication (to appear).

[3] A. Brumer, On the Units of Algebraic Number Fields, Mathematika, 14 (1967), 121-124. | MR: 36 #3746 | Zbl: 0171.01105

[4] J. Coates and C. Goldstein, Some Remarks on the Main Conjecture for Elliptic Curves with Complex Multiplication, Amer J. Math., 105 (1983), 337-366. | MR: 85d:11100 | Zbl: 0524.14023

[5] J. Coates and A. Wiles, On the Conjecture of Birch and Swinnerton-Dyer, Inventiones Math., 39 (1977), 223-251. | MR: 57 #3134 | Zbl: 0359.14009

[6] J. Coates and A. Wiles, On p-adic L-functions and Elliptic Units, J. Austral. Math. Soc., ser. A, 26 (1978), 1-25. | MR: 80a:12007 | Zbl: 0442.12007

[7] R. Damerell, L-functions of Elliptic Curves with Complex Multiplication, Acta Arith., 17 (1970), 287-301. | MR: 44 #2758 | Zbl: 0209.24603

[8] R. Gillard and G. Robert, Groupes d'Unités Elliptiques, Bull. Soc. Math. France, 107 (1979), 305-317. | Numdam | MR: 81c:12009 | Zbl: 0434.12003

[9] C. Goldstein and N. Schappacher, Séries d'Eisenstein et Fonctions L de Courbes Elliptiques à Multiplication Complexe, Crelle's J., 327 (1981), 184-218. | MR: 82m:12007 | Zbl: 0456.12007

[10] K. Iwasawa, Lectures on p-adic L-functions, Annals of Math. Studies, 74 P.U.P. (1972). | MR: 50 #12974 | Zbl: 0236.12001

[11] E. E. Kummer, Ùber eine allgemeine Eigenschaft der rationale Entwicklungs coefficienten einer bestimmten Gattung analysischer Functionen, Crelle's J., 41 (1851), 368-372, (= Collected Works vol. 1, pp. 358-362 Springer-Verlag (1975)).

[12] T. Kubota and H. W. Leopoldt, Eine p-adische Theorie der Zetawerte, Crelle's J., 214/215 (1964), 328-339. | MR: 29 #1199 | Zbl: 0186.09103

[13] N. Katz, p-adic Interpolation of Real-Analytic Eisenstein Series, Annals of Math., 104 (1976), 459-571. | MR: 58 #22071 | Zbl: 0354.14007

[14] N. Katz, The Eisenstein Measure and p-adic Interpolation, Amer. J. Math., 99 (1977), 238-311. | MR: 58 #5602 | Zbl: 0375.12022

[15] N. Katz, Formal Groups and p-adic Interpolation, Astérisque, 41-42 (1977), 55-65. | MR: 56 #319 | Zbl: 0351.14024

[16] N. Katz, Divisibilities, Congruences and Cartier Duality, J. Fac. Sci. Univ. Tokyo, Ser. 1A, 28 (1982), 667-678. | Zbl: 0559.14032

[17] S. Lang, Elliptic Functions, Addison Wesley (1973). | MR: 53 #13117 | Zbl: 0316.14001

[18] H. W. Leopoldt, Eine p-adische Theorie der Zetawerte II, Crelle's J., 274/275 (1975), 224-239. | MR: 52 #351 | Zbl: 0309.12009

[19] S. Lichtenbaum, On p-adic L-functions Associated to Elliptic Curves, Inventiones Math., 56 (1980), 19-55. | MR: 81j:12013 | Zbl: 0425.12017

[20] J. Lubin, One-Parameter Formal Lie Groups over p-adic Integer Rings, Annals of Math., 80 (1964), 464-484. | MR: 29 #5827 | Zbl: 0135.07003

[21] B. Mazur and P. Swinnerton-Dyer, Arithmetic of Weil Curves, Inventiones Math., 25 (1974), 1-61. | MR: 50 #7152 | Zbl: 0281.14016

[22] B. Mazur and A. Wiles, Class fields of Abelian extensions of Q, Invent. Math., 76 (1984), 179-330. | MR: 85m:11069 | Zbl: 0545.12005

[23] G. Robert, Unités Elliptiques, Bull. Soc. Math. France, Mémoire 36 (1973). | Numdam | Zbl: 0314.12006

[24] K. Rubin, Congruences for Special Values of L-functions of Elliptic Curves with Complex Multiplication, Invent. Math., 71 (1983), 339-364. | MR: 84h:12018 | Zbl: 0513.14012

[25] J.-P. Serre, Formes Modulaires et Fonction Zêta p-adiques, in Springer Lecture Notes in Math., 350 (1973), 191-268. | MR: 53 #7949a | Zbl: 0277.12014

[26] J.-P. Serre and J. Tate, Good Reduction of Abelian Varieties, Annals of Math., 88 (1968), 492-517. | MR: 38 #4488 | Zbl: 0172.46101

[27] E. De Shalit, Ph. D. Thesis, Princeton University (1984).

[28] J. Tate, p-divisible Groups, Proc. Conf. on Local Fields, Ed. T. Springer, Springer-Verlag (1967), 158-183. | MR: 38 #155 | Zbl: 0157.27601

[29] M. M. Vishik and J. Manin, p-adic Hecke Series of Imaginary Quadratic Fields, Math. USSR Sbornik, 24 (1974), 345-371. | Zbl: 0329.12016

[30] L. Washington, Introduction to Cyclotomic Fields, Graduate Texts in Math., Springer-Verlag (1982). | MR: 85g:11001 | Zbl: 0484.12001

[31] A. Weil, Elliptic Functions According to Eisenstein and Kronecker, Springer-Verlag (1976). | MR: 58 #27769a | Zbl: 0318.33004

[32] R. Yager, On the Two-Variable p-adic L-function, Annals of Math., 115 (1982), 411-449. | MR: 84b:14020 | Zbl: 0496.12010

[33] R. Yager, p-adic Measures on Galois Groups, Inventiones Math., 76 (1984), 331-343. | MR: 86b:11045 | Zbl: 0555.12006

Cited by Sources: