On holomorphically separable complex solv-manifolds
Annales de l'Institut Fourier, Tome 36 (1986) no. 3, pp. 57-65.

Soit G un groupe de Lie complexe résoluble et H un sous-groupe complexe fermé de G. Si les fonctions holomorphes sur la variété complexe X:=G/H séparent localement les points de X, alors X est une variété de Stein. De plus, il existe un sous-groupe H ^ d’indice fini dans H avec π 1 (G/H) nilpotent. Dans des cas particuliers (par exemple si H est discret), H normalise H ^ et H/H ^ est abélien.

Let G be a solvable complex Lie group and H a closed complex subgroup of G. If the global holomorphic functions of the complex manifold X:G/H locally separate points on X, then X is a Stein manifold. Moreover there is a subgroup H ^ of finite index in H with π 1 (G/H ^) nilpotent. In special situations (e.g. if H is discrete) H normalizes H ^ and H/H ^ is abelian.

@article{AIF_1986__36_3_57_0,
     author = {Huckleberry, Alan T. and Oeljeklaus, E.},
     title = {On holomorphically separable complex solv-manifolds},
     journal = {Annales de l'Institut Fourier},
     pages = {57--65},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {36},
     number = {3},
     year = {1986},
     doi = {10.5802/aif.1059},
     zbl = {0571.32012},
     mrnumber = {88b:32069},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1059/}
}
TY  - JOUR
AU  - Huckleberry, Alan T.
AU  - Oeljeklaus, E.
TI  - On holomorphically separable complex solv-manifolds
JO  - Annales de l'Institut Fourier
PY  - 1986
SP  - 57
EP  - 65
VL  - 36
IS  - 3
PB  - Institut Fourier
PP  - Grenoble
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.1059/
DO  - 10.5802/aif.1059
LA  - en
ID  - AIF_1986__36_3_57_0
ER  - 
%0 Journal Article
%A Huckleberry, Alan T.
%A Oeljeklaus, E.
%T On holomorphically separable complex solv-manifolds
%J Annales de l'Institut Fourier
%D 1986
%P 57-65
%V 36
%N 3
%I Institut Fourier
%C Grenoble
%U https://aif.centre-mersenne.org/articles/10.5802/aif.1059/
%R 10.5802/aif.1059
%G en
%F AIF_1986__36_3_57_0
Huckleberry, Alan T.; Oeljeklaus, E. On holomorphically separable complex solv-manifolds. Annales de l'Institut Fourier, Tome 36 (1986) no. 3, pp. 57-65. doi : 10.5802/aif.1059. https://aif.centre-mersenne.org/articles/10.5802/aif.1059/

[1] A. Borel, Linear algebraic groups, Benjamin, New York, 1969. | MR | Zbl

[2] G. Coeuré, J. Loeb, A counterexample to the Serre problem with a bounded domain of C2 as fiber, Ann. of Math., 122 (1985), 329-334. | MR | Zbl

[3] B. Gilligan, A.T. Huckleberry, On non-compact complex nilmanifolds, Math. Ann., 238 (1978), 39-49. | MR | Zbl

[4] H. Grauert, Analytische Faserungen über holomorph-vollständigen Räumen, Math. Ann., 135 (1958), 263-273. | MR | Zbl

[5] G. Hochschild, G.D. Mostow, On the algebra of representative functions of an analytic group, II, Am. J. Math., 86 (1964), 869-887. | MR | Zbl

[6] A.T. Huckleberry, E. Oeljeklaus, Homogeneous spaces from a complex analytic viewpoint, Progress in Mathematics, Birkhäuser Vol. 14 (1981), 159-186. | MR | Zbl

[7] J. Loeb, Actions d'une forme de Lie réelle d'un groupe de Lie complexe sur les fonctions plurisousharmoniques, Annales de l'Institut Fourier, 35-4 (1985), 59-97. | Numdam | MR | Zbl

[8] Y. Matsushima, Espaces homogènes de Stein des groupes de Lie complexes I, Nagoya Math. J., 16 (1960), 205-218. | MR | Zbl

[9] Y. Matsushima, A. Morimoto, Sur certains espaces fibrés holomorphes sur une variété de Stein, Bull. Soc. Math. France, 88 (1960), 137-155. | Numdam | MR | Zbl

[10] G.D. Mostow, Factor spaces of solvable groups, Ann. of Math., 60 (1954), 1-27. | MR | Zbl

[11] D. Snow, Stein quotients of connected complex Lie groups, Manuskripta Math., 50 (1985), 185-214. | MR | Zbl

[12] K. Stein, Überlagerungen holomorph-vollständiger komplexer Räume, Arch. Math., 7 (1956), 354-361. | MR | Zbl

[13] V. Varadarajan, Lie groups, Lie algebras, and their representations, Prentice Hall, Englewood Cliffs, 1974. | Zbl

Cité par Sources :