Global stability for diagrams of differentiable applications
Annales de l'Institut Fourier, Tome 36 (1986) no. 1, pp. 133-153.

Dans cet article, nous donnons quelques exemples qui suggèrent la non existence de diagrammes globalement C -stables R g M f R, M compact. Si Φ : MQ est fixe nous définissons la Φ-équivalence pour les applications f:MP et la Φ-stabilité correspondante. La procédure de globalisation fonctionne et nous pouvons comparer la Φ-stabilité, la Φ-stabilité infinitésimale et la Φ-stabilité homotopique. Nous donnons aussi quelques théorèmes de caractérisation pour des dimensions inférieures.

In this paper, we give some examples which point to the non-existence of C -global stable diagrams R g M f R, M compact. If Φ : MQ is fixed we define the Φ-equivalence for maps f:MP and the corresponding Φ-stability. The globalization procedure works and we can compare the Φ-stability, Φ-infinitesimal stability, and Φ-homotopical stability. Also we give some characterization theorems for lower dimensions.

@article{AIF_1986__36_1_133_0,
     author = {Favaro, Luis Antonio and Mendes, C. M.},
     title = {Global stability for diagrams of differentiable applications},
     journal = {Annales de l'Institut Fourier},
     pages = {133--153},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {36},
     number = {1},
     year = {1986},
     doi = {10.5802/aif.1041},
     zbl = {0552.58009},
     mrnumber = {87k:58033},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1041/}
}
TY  - JOUR
AU  - Favaro, Luis Antonio
AU  - Mendes, C. M.
TI  - Global stability for diagrams of differentiable applications
JO  - Annales de l'Institut Fourier
PY  - 1986
SP  - 133
EP  - 153
VL  - 36
IS  - 1
PB  - Institut Fourier
PP  - Grenoble
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.1041/
DO  - 10.5802/aif.1041
LA  - en
ID  - AIF_1986__36_1_133_0
ER  - 
%0 Journal Article
%A Favaro, Luis Antonio
%A Mendes, C. M.
%T Global stability for diagrams of differentiable applications
%J Annales de l'Institut Fourier
%D 1986
%P 133-153
%V 36
%N 1
%I Institut Fourier
%C Grenoble
%U https://aif.centre-mersenne.org/articles/10.5802/aif.1041/
%R 10.5802/aif.1041
%G en
%F AIF_1986__36_1_133_0
Favaro, Luis Antonio; Mendes, C. M. Global stability for diagrams of differentiable applications. Annales de l'Institut Fourier, Tome 36 (1986) no. 1, pp. 133-153. doi : 10.5802/aif.1041. https://aif.centre-mersenne.org/articles/10.5802/aif.1041/

[1] M.A. Buchner, Stability of the cut locus in dimensions less than or equal to 6, Inventiones Math., 43 (1977), 199-231. | MR | Zbl

[2] J.W. Bruce, On singularities, envelopes and elementary differential geometry, Math. Proc. Camb. Phil. Soc., (1981). | MR | Zbl

[3] M.J.D. Carneiro, On the Envelope Theory, PhD Thesis, Princeton, (1980).

[4] J.P. Dufour, Déploiements de cascades d'applications différentiables, C.R.A.S., Paris, 281 (1975), A 31-34. | MR | Zbl

[5] J.P. Dufour, Diagrammes d'applications différentiables, Thèse Université des Sciences et Techniques du Languedoc, (1979).

[6] J.P. Dufour, Stabilité simultanée de deux fonctions, Ann. Inst. Fourier, Grenoble, 29, 1 (1979), 263-282. | Numdam | MR | Zbl

[7] L.A. Favaro and C.M. Mendes, Singularidades e Envoltorias, Comunicaçao, IV Escola de Geometria Diferencial, IMPA, Rio de Janeiro, (1982).

[8] M. Golubitsky and V. Guillemin, Stable Mappings and Their Singularities, Graduate Texts in Mathematics, Springer-Verlag, Vol. 14 (1973). | MR | Zbl

[9] J.N. Mather, Stability of C∞ mappings II : Infinitesimal, stability implies stability, Annals of Math., Vol. 89, n° 2 (1969). | MR | Zbl

[10] J. Martinet, Déploiements versels des applications différentiables et classification des applications stables, Lectures Notes in Mathematics, 535 (1975). | Zbl

[11] C.M. Mendes, ψ-Estabilidade, Tese de Doutorado, ICMSC-USP, (1981).

[12] R. Thom, Sur la théorie des enveloppes, J. Math. Pure et Appl., Tome XLI, Fac. 2 (1962). | MR | Zbl

Cité par Sources :