On construit un simplexe de Choquet dont l’ensemble des points extrémaux est -analytique, mais n’est pas -Borélien. L’ensemble est un dans sa compactification de Stone-Cech. C’est donc un exemple d’ensemble qui n’est pas absolu.
We construct a Choquet simplex whose set of extreme points is -analytic, but is not a -Borel set. The set has the surprising property of being a set in its Stone-Cech compactification. It is hence an example of a set that is not absolute.
@article{AIF_1985__35_3_195_0, author = {Talagrand, Michel}, title = {Choquet simplexes whose set of extreme points is $K$-analytic}, journal = {Annales de l'Institut Fourier}, pages = {195--206}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {35}, number = {3}, year = {1985}, doi = {10.5802/aif.1024}, zbl = {0564.46008}, mrnumber = {87a:46022}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1024/} }
TY - JOUR AU - Talagrand, Michel TI - Choquet simplexes whose set of extreme points is $K$-analytic JO - Annales de l'Institut Fourier PY - 1985 SP - 195 EP - 206 VL - 35 IS - 3 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1024/ DO - 10.5802/aif.1024 LA - en ID - AIF_1985__35_3_195_0 ER -
%0 Journal Article %A Talagrand, Michel %T Choquet simplexes whose set of extreme points is $K$-analytic %J Annales de l'Institut Fourier %D 1985 %P 195-206 %V 35 %N 3 %I Institut Fourier %C Grenoble %U https://aif.centre-mersenne.org/articles/10.5802/aif.1024/ %R 10.5802/aif.1024 %G en %F AIF_1985__35_3_195_0
Talagrand, Michel. Choquet simplexes whose set of extreme points is $K$-analytic. Annales de l'Institut Fourier, Tome 35 (1985) no. 3, pp. 195-206. doi : 10.5802/aif.1024. https://aif.centre-mersenne.org/articles/10.5802/aif.1024/
[1] Lectures on analysis, New York, W.A. Benjamin, 1969 (Math. Lecture Notes series). | Zbl
,[2] A survey of separable descriptive theory of sets and spaces, Czechoslovak Math. J., 20 (1967), 406-467. | Zbl
,[3] An extreme point criterion for separability of a dual Banach space, and a new proof of a theorem of Corson, Quarterly J. Math., 27 (1976), 379-385. | MR | Zbl
,[4] A criterion for the metrizability of a compact convex set in terms of the set of extreme points, J. Funct. Anal., 11 (1972), 385-392. | MR | Zbl
,[5] Lectures on Choquet's theorem, Van Nostrand Math. studies, 7 (1966). | MR | Zbl
,[6] Géométrie du simplexe des moyennes, J. Funct. Anal., 33 (1919), 304-333. | Zbl
,[7] Espaces de Banach faiblement K-analytiques, Ann. of Math., 110 (1979), 407-438. | MR | Zbl
,[8] Sur les convexes compacts dont l'ensemble des points extrémaux est K-analytique, Bull. Soc. Math. France, 107 (1979), 49-53. | Numdam | MR | Zbl
,Cité par Sources :