On construit une suite spectrale qui converge vers le bigradué associé à une filtration convenable des groupes d’homotopie du monoïde simplicial des équivalences d’homotopie fibrées d’un fibré de Kan dans lui-même. On obtient de nouveaux calculs de ces groupes. En particulier, on calcule le groupe des classes d’homotopie des équivalences d’homotopie d’un espace ayant trois groupes d’homotopie non nuls en dessous de sa dimension.
We construct a spectral sequence converging to the bigraded group associated with a suitable filtration of the homotopy groups of the simplicial monoid consisting of the fibre homotopy equivalences from a Kan fibration into itself. In particular, we calculate the homotopy group of self-equivalences of spaces with three non vanishing homotopy groups under their dimension.
@article{AIF_1985__35_3_33_0, author = {Didierjean, Genevi\`eve}, title = {Homotopie de l'espace des \'equivalences d'homotopie fibr\'ees}, journal = {Annales de l'Institut Fourier}, pages = {33--47}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {35}, number = {3}, year = {1985}, doi = {10.5802/aif.1017}, zbl = {0563.55005}, mrnumber = {87e:55008}, language = {fr}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1017/} }
TY - JOUR AU - Didierjean, Geneviève TI - Homotopie de l'espace des équivalences d'homotopie fibrées JO - Annales de l'Institut Fourier PY - 1985 SP - 33 EP - 47 VL - 35 IS - 3 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1017/ DO - 10.5802/aif.1017 LA - fr ID - AIF_1985__35_3_33_0 ER -
%0 Journal Article %A Didierjean, Geneviève %T Homotopie de l'espace des équivalences d'homotopie fibrées %J Annales de l'Institut Fourier %D 1985 %P 33-47 %V 35 %N 3 %I Institut Fourier %C Grenoble %U https://aif.centre-mersenne.org/articles/10.5802/aif.1017/ %R 10.5802/aif.1017 %G fr %F AIF_1985__35_3_33_0
Didierjean, Geneviève. Homotopie de l'espace des équivalences d'homotopie fibrées. Annales de l'Institut Fourier, Tome 35 (1985) no. 3, pp. 33-47. doi : 10.5802/aif.1017. https://aif.centre-mersenne.org/articles/10.5802/aif.1017/
[1] Groups of homotopy classes, Lecture Notes in mathematics, Springer Verlag, 4 (1964). | Zbl
et ,[2] On the homotopy classification of a fixed map, Trans. Amer. Math. Soc., 88 (1958), 57-74. | MR | Zbl
et ,[3] Groupes d'homotopie du monoïde des équivalences d'homotopie fibrées, C.R.A.S. Paris, t. 292 (1981), 555-558. | MR | Zbl
,[4] Homotopie des espaces de sections, Lecture Notes in Mathematics, Springer Verlag, 941 (1981). | Zbl
,[5] Homology, Springer Verlag, (1963).
,[6] Simplicial objects in algebraic topology, Van Nostrand, (1967). | Zbl
,[7] On the group of self homotopy equivalences of H-spaces of low rank I. Memoirs of the Faculty of Science, Kyushu University, Série A. Vol. 35 (1981), 247-282, 307-323. | MR | Zbl
,[8] Self-equivalences of pseudo-projective planes, Topology, 4 (1965), 109-127. | MR | Zbl
,[9] The group of homotopy self-equivalence classes of CW complexes, Math. Proc. Camb. Phil. Soc., 93 (1983), 275-293. | MR | Zbl
,[10] On the group of self-equivalences of the product of spheres, Hiroshima Math. J., 5 (1975), 69-86. | MR | Zbl
,[11] The group of homotopy self-equivalences of some compact CW complexes, Math. Ann., 200 (1973), 253-266. | MR | Zbl
,[12] On the group ℰ(X) of homotopy equivalence maps, Bull. Amer. Math. Soc., 492 (1964), 361-365. | MR | Zbl
,[13] Algebraic topology, Mc Graw-Hill, (1966). | MR | Zbl
,[14] Self homotopy-equivalences of a space with two non-vanishing homotopy group, Proc. of the Amer. Math. Soc., Vol. 79, n° 1 (1980), 134-138. | MR | Zbl
,Cité par Sources :