XXL type Artin groups are CAT(0) and acylindrically hyperbolic
[Les groupes d’Artin de type XXL sont CAT(0) et acylindriquement hyperboliques]
Annales de l'Institut Fourier, Tome 72 (2022) no. 6, pp. 2541-2555.

Nous décrivons un espace classifiant localement simple CAT(0) pour les groupes d’Artin de type extra extra large (dont tous les exposants sont au moins égaux à 5). De plus, lorsque le groupe n’est pas diédral, nous décrivons une géodésique périodique de rang 1, ce qui implique que ces groupes d’Artin de type extra extra large sont acylindriquement hyperboliques. En conjonction avec la propriété RD prouvée par Ciobanu, Holt et Rees, cela implique la conjecture de Baum–Connes pour tout les groupes d’Artin de type extra extra large.

We describe a simple locally CAT(0) classifying space for XXL type Artin groups (with all labels at least 5). Furthermore, when the Artin group is not dihedral, we describe a rank 1 periodic geodesic, thus proving that XXL type Artin groups are acylindrically hyperbolic. Together with Property RD proved by Ciobanu, Holt and Rees, the CAT(0) property implies the Baum–Connes conjecture for all XXL type Artin groups.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3524
Classification : 20F36, 20F65, 20F67
Keywords: Artin groups, CAT(0) space, acylindrical hyperbolicity, Baum–Connes conjecture.
Mot clés : Groupes d’Artin, espaces CAT(0), hyperbolicité acylindrique, conjecture de Baum–Connes.

Haettel, Thomas 1

1 Université de Montpellier IMAG, Univ Montpellier, CNRS, France Place Eugène Bataillon 34090 Montpellier France
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AIF_2022__72_6_2541_0,
     author = {Haettel, Thomas},
     title = {XXL type {Artin} groups are {CAT(0)} and acylindrically hyperbolic},
     journal = {Annales de l'Institut Fourier},
     pages = {2541--2555},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {72},
     number = {6},
     year = {2022},
     doi = {10.5802/aif.3524},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3524/}
}
TY  - JOUR
AU  - Haettel, Thomas
TI  - XXL type Artin groups are CAT(0) and acylindrically hyperbolic
JO  - Annales de l'Institut Fourier
PY  - 2022
SP  - 2541
EP  - 2555
VL  - 72
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3524/
DO  - 10.5802/aif.3524
LA  - en
ID  - AIF_2022__72_6_2541_0
ER  - 
%0 Journal Article
%A Haettel, Thomas
%T XXL type Artin groups are CAT(0) and acylindrically hyperbolic
%J Annales de l'Institut Fourier
%D 2022
%P 2541-2555
%V 72
%N 6
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3524/
%R 10.5802/aif.3524
%G en
%F AIF_2022__72_6_2541_0
Haettel, Thomas. XXL type Artin groups are CAT(0) and acylindrically hyperbolic. Annales de l'Institut Fourier, Tome 72 (2022) no. 6, pp. 2541-2555. doi : 10.5802/aif.3524. https://aif.centre-mersenne.org/articles/10.5802/aif.3524/

[1] Abbott, C. R.; Dahmani, F0 Property P naive for acylindrically hyperbolic groups, Math. Z., Volume 291 (2019) no. 1-2, pp. 555-568 | DOI | MR | Zbl

[2] Bartels, A.; Lück, W. The Borel conjecture for hyperbolic and CAT (0)-groups, Ann. of Math. (2), Volume 175 (2012) no. 2, pp. 631-689 | DOI | MR | Zbl

[3] Bell, R. W. Three-dimensional FC Artin groups are CAT(0), Geom. Dedicata, Volume 113 (2005), pp. 21-53 | DOI | MR | Zbl

[4] Bestvina, M. Non-positively curved aspects of Artin groups of finite type, Geom. Topol., Volume 3 (1999), pp. 269-302 | DOI | MR | Zbl

[5] Bestvina, M.; Fujiwara, K. Bounded cohomology of subgroups of mapping class groups, Geom. Topol., Volume 6 (2002), pp. 69-89 | DOI | MR | Zbl

[6] Bowditch, B. H. Tight geodesics in the curve complex, Invent. Math., Volume 171 (2008) no. 2, pp. 281-300 | DOI | MR | Zbl

[7] Brady, N.; Crisp, J. Two-dimensional Artin groups with CAT (0) dimension three, Proceedings of the Conference on Geometric and Combinatorial Group Theory, Part I (Haifa, 2000), Volume 94 (2002), pp. 185-214 | DOI | MR | Zbl

[8] Brady, T. Artin groups of finite type with three generators, Michigan Math. J., Volume 47 (2000) no. 2, pp. 313-324 | DOI | MR | Zbl

[9] Brady, T.; McCammond, J. Three-generator Artin groups of large type are biautomatic, J. Pure Appl. Algebra, Volume 151 (2000) no. 1, pp. 1-9 | DOI | MR | Zbl

[10] Brady, T.; McCammond, J. Braids, posets and orthoschemes, Algebr. Geom. Topol., Volume 10 (2010) no. 4, pp. 2277-2314 | DOI | MR | Zbl

[11] Calvez, M.; Wiest, B. Acylindrical hyperbolicity and Artin-Tits groups of spherical type, Geom. Dedicata, Volume 191 (2017), pp. 199-215 | DOI | MR | Zbl

[12] Caprace, P.e-E.; Sageev, M. Rank rigidity for CAT(0) cube complexes, Geom. Funct. Anal., Volume 21 (2011) no. 4, pp. 851-891 | DOI | MR | Zbl

[13] Charney, R. Problems related to Artin groups (American Institute of Mathematics, https://people.brandeis.edu/~charney/papers/Artin_probs.pdf)

[14] Charney, R.; Davis, M. W. Finite K(π,1)s for Artin groups, Prospects in topology (Princeton, NJ, 1994) (Ann. of Math. Stud.), Volume 138, Princeton Univ. Press, Princeton, NJ, 1995, pp. 110-124 | MR | Zbl

[15] Charney, R.; Morris-Wright, R. Artin groups of infinite type: trivial centers and acylindical hyperbolicity (2018) (https://arxiv.org/abs/1805.04028)

[16] Chatterji, I.; Martin, A. A note on the acylindrical hyperbolicity of groups acting on CAT(0) cube complexes (2016) (https://arxiv.org/abs/1610.06864)

[17] Ciobanu, L.; Holt, D. F.; Rees, S. Rapid decay and Baum–Connes for large type Artin groups, Trans. Amer. Math. Soc., Volume 368 (2016) no. 9, pp. 6103-6129 | DOI | MR | Zbl

[18] Dahmani, F.; Guirardel, V.; Osin, D. Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces (2011) (https://arxiv.org/abs/1111.7048)

[19] Haettel, T. Virtually cocompactly cubulated Artin–Tits groups, Int. Math. Res. Not. IMRN (2021) no. 4, pp. 2919-2961 | DOI | MR | Zbl

[20] Haettel, T.; Kielak, D.; Schwer, P. The 6-strand braid group is CAT(0), Geom. Dedicata, Volume 182 (2016), pp. 263-286 | DOI | MR | Zbl

[21] Huang, J.; Osajda, D. Helly meets Garside and Artin (2019) (https://arxiv.org/abs/1904.09060)

[22] Huang, J.; Osajda, D. Metric systolicity and two-dimensional Artin groups, Math. Ann., Volume 374 (2019) no. 3-4, pp. 1311-1352 | DOI | MR | Zbl

[23] Lafforgue, V. K-théorie bivariante pour les algèbres de Banach et conjecture de Baum–Connes, Invent. Math., Volume 149 (2002) no. 1, pp. 1-95 | DOI | MR | Zbl

[24] Masur, H. A.; Minsky, Y. N. Geometry of the complex of curves. I. Hyperbolicity, Invent. Math., Volume 138 (1999) no. 1, pp. 103-149 | DOI | MR | Zbl

[25] McCammond, Jon The mysterious geometry of Artin groups, Winter Braids Lect. Notes, Volume 4 (2017) no. Winter Braids VII (Caen, 2017), 1, 30 pages | DOI | MR

[26] Osin, D. Acylindrically hyperbolic groups, Trans. Amer. Math. Soc., Volume 368 (2016) no. 2, pp. 851-888 | DOI | MR | Zbl

[27] Osin, D. Groups acting acylindrically on hyperbolic spaces (2017) (https://arxiv.org/abs/1712.00814)

[28] Sisto, A. Contracting elements and random walks, J. Reine Angew. Math., Volume 742 (2018), pp. 79-114 | DOI | MR | Zbl

[29] Wegner, C. The K-theoretic Farrell–Jones conjecture for CAT(0)-groups, Proc. Amer. Math. Soc., Volume 140 (2012) no. 3, pp. 779-793 | DOI | MR | Zbl

Cité par Sources :