Minimal time issues for the observability of Grushin-type equations
Annales de l'Institut Fourier, Volume 70 (2020) no. 1, pp. 247-312.

The goal of this article is to provide several sharp results on the minimal time required for observability of several Grushin-type equations. Namely, it is by now well-known that Grushin-type equations are degenerate parabolic equations for which some geometric conditions are needed to get observability properties, contrarily to the usual parabolic equations. Our results concern the Grushin operator t -Δ x -|x| 2 Δ y observed from the whole boundary in the multi-dimensional setting (meaning that xΩ x , where Ω x is a subset of d x with d x 1, yΩ y , where Ω y is a subset of d y with d y 1, and the observation is done on Γ=Ω x ×Ω y ), from one lateral boundary in the one-dimensional setting (i.e. d x =1), including some generalized version of the form t - x 2 -(q(x)) 2 y 2 for suitable functions q, and the Heisenberg operator t - x 2 -(x z + y ) 2 observed from one lateral boundary. In all these cases, our approach strongly relies on the analysis of the family of equations obtained by using the Fourier expansion of the equations in the y (or (y,z)) variables, and in particular the asymptotic of the cost of observability in the Fourier parameters. Combining these estimates with results on the rate of dissipation of each of these equations, we obtain observability estimates in suitably large times. We then show that the times we obtain to get observability are optimal in several cases using Agmon type estimates.

Le but de cet article est de fournir plusieurs estimées optimales sur le temps minimal nécessaire pour avoir l’observabilité d’équations de type Grushin. En effet, il est désormais bien connu que les équations de type Grushin sont des équations paraboliques dégénérées pour lesquelles des conditions géométriques sont nécessaires pour satisfaire des propriétés d’observabilité, contrairement aux équations paraboliques usuelles. Nos résultats concernent l’opérateur de Grushin t -Δ x -|x| 2 Δ y observé de tout le bord dans le cas multi-dimensionnel (dans le sens où xΩ x , où Ω x est un ouvert de d x , avec d x 1, yΩ y est un ouvert de d y avec d y 1, et l’observation est faite sur Γ=Ω x ×Ω y ), d’un bord latéral dans le cas uni-dimensionnel (i.e. d x =1), incluant certaines généralisations de la forme t - x 2 -(q(x)) 2 y 2 pour des fonctions q convenables, et l’opérateur de Heisenberg t - x 2 -(x z + y ) 2 observé d’un bord latéral. Dans tous ces cas, notre approche repose fortement sur l’analyse de la famille d’équations obtenues en développant la solution en Fourier dans la variable y (ou (y,z)), et en particulier sur l’asymptotique du coût de l’observabilité en fonction du paramètre de Fourier. En combinant ces estimées avec les résultats sur le taux de dissipation de chacune de ces équations, nous obtenons des inégalités d’observabilité en temps suffisamment grand. Nous montrons ensuite que les temps que nous avons obtenus pour l’observabilité sont optimaux dans plusieurs cas, en utilisant des estimées de Agmon.

Received: 2018-01-07
Revised: 2018-10-24
Accepted: 2019-01-17
Published online: 2020-05-28
DOI: https://doi.org/10.5802/aif.3313
Classification: 35K65,  93B07
Keywords: Observability, Grushin equations, Carleman estimates
@article{AIF_2020__70_1_247_0,
     author = {Beauchard, Karine and Dard\'e, J\'er\'emi and Ervedoza, Sylvain},
     title = {Minimal time issues for the observability of Grushin-type equations},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {70},
     number = {1},
     year = {2020},
     pages = {247-312},
     doi = {10.5802/aif.3313},
     language = {en},
     url = {aif.centre-mersenne.org/item/AIF_2020__70_1_247_0/}
}
Beauchard, Karine; Dardé, Jérémi; Ervedoza, Sylvain. Minimal time issues for the observability of Grushin-type equations. Annales de l'Institut Fourier, Volume 70 (2020) no. 1, pp. 247-312. doi : 10.5802/aif.3313. https://aif.centre-mersenne.org/item/AIF_2020__70_1_247_0/

[1] Alabau-Boussouira, Fatiha; Cannarsa, Piermarco; Fragnelli, Genni Carleman estimates for degenerate parabolic operators with applications to null controllability, J. Evol. Equ., Volume 6 (2006) no. 2, pp. 161-204 | Article | MR 2227693 | Zbl 1103.35052

[2] Beauchard, Karine; Cannarsa, Piermarco Heat equation on the Heisenberg group: observability and applications, J. Differ. Equations, Volume 262 (2017) no. 8, pp. 4475-4521 | Article | MR 3603278 | Zbl 1366.35206

[3] Beauchard, Karine; Cannarsa, Piermarco; Guglielmi, Roberto Null controllability of Grushin-type operators in dimension two, J. Eur. Math. Soc., Volume 16 (2014) no. 1, pp. 67-101 | Article | MR 3141729 | Zbl 1293.35148

[4] Beauchard, Karine; Cannarsa, Piermarco; Yamamoto, Masahiro Inverse source problem and null controllability for multidimensional parabolic operators of Grushin type, Inverse Probl., Volume 30 (2014) no. 2, 025006, 26 pages | Article | MR 3162108 | Zbl 1286.35260

[5] Beauchard, Karine; Helffer, Bernard; Henry, Raphael; Robbiano, Luc Degenerate parabolic operators of Kolmogorov type with a geometric control condition, ESAIM, Control Optim. Calc. Var., Volume 21 (2015) no. 2, pp. 487-512 | Article | MR 3348409 | Zbl 1311.93042

[6] Beauchard, Karine; Miller, Luc; Morancey, Morgan 2D Grushin-type equations: minimal time and null controllable data, J. Differ. Equations, Volume 259 (2015) no. 11, pp. 5813-5845 | Article | MR 3397310 | Zbl 1321.35098

[7] Beauchard, Karine; Pravda-Starov, Karel Null-controllability of non-autonomous Ornstein–Uhlenbeck equations, J. Math. Anal. Appl., Volume 456 (2017) no. 1, pp. 496-524 | Article | MR 3680980 | Zbl 06769570

[8] Beauchard, Karine; Pravda-Starov, Karel Null-controllability of hypoelliptic quadratic differential equations, J. Éc. Polytech., Math., Volume 5 (2018), pp. 1-43 | Article | MR 3732691 | Zbl 1403.93041

[9] Cannarsa, Piermarco; Fragnelli, Genni; Rocchetti, Dario Null controllability of degenerate parabolic operators with drift, Netw. Heterog. Media, Volume 2 (2007) no. 4, pp. 695-715 | Article | MR 2357764 | Zbl 1140.93011

[10] Cannarsa, Piermarco; Fragnelli, Genni; Rocchetti, Dario Controllability results for a class of one-dimensional degenerate parabolic problems in nondivergence form, J. Evol. Equ., Volume 8 (2008) no. 4, pp. 583-616 | Article | MR 2460930 | Zbl 1176.35108

[11] Cannarsa, Piermarco; Guglielmi, Roberto Null controllability in large time for the parabolic Grushin operator with singular potential, Geometric control theory and sub-Riemannian geometry (Springer INdAM Series) Volume 5, Springer, 2014, pp. 87-102 | Article | MR 3205097 | Zbl 1291.93036

[12] Cannarsa, Piermarco; Martinez, Patrick; Vancostenoble, Judith Null controllability of degenerate heat equations, Adv. Differ. Equ., Volume 10 (2005) no. 2, pp. 153-190 | MR 2106129 | Zbl 1010.93051

[13] Cannarsa, Piermarco; Martinez, Patrick; Vancostenoble, Judith Carleman estimates for a class of degenerate parabolic operators, SIAM J. Control Optimization, Volume 47 (2008) no. 1, pp. 1-19 | Article | MR MR2373460 | Zbl 1328.35114

[14] Cannarsa, Piermarco; Martinez, Patrick; Vancostenoble, Judith Carleman estimates and null controllability for boundary-degenerate parabolic operators, C. R. Math. Acad. Sci. Paris, Volume 347 (2009) no. 3-4, pp. 147-152 | Article | MR 2538102 | Zbl 1162.35330

[15] Cannarsa, Piermarco; Martinez, Patrick; Vancostenoble, Judith Global Carleman estimates for degenerate parabolic operators with applications, Mem. Am. Math. Soc., Volume 239 (2016) no. 1133, ix+209 pages | Article | MR 3430764 | Zbl 1328.35114

[16] Dardé, Jérémi; Ervedoza, Sylvain On the cost of observability in small times for the one-dimensional heat equation, Anal. PDE, Volume 12 (2016) no. 6, pp. 1455-1488 | Article | MR 3921310 | Zbl 1417.35051

[17] Dardé, Jérémi; Ervedoza, Sylvain On the reachable set for the one-dimensional heat equation, SIAM J. Control Optimization, Volume 56 (2018) no. 3, pp. 1692-1715 | Article | MR 3802267 | Zbl 1391.35171

[18] Davies, Edward B. Heat kernels and spectral theory, Cambridge Tracts in Mathematics, Volume 92, Cambridge University Press, 1989, x+197 pages | Article | MR 990239 | Zbl 0699.35006

[19] Duprez, Michel; Koenig, Armand Control of the Grushin equation: non-rectangular control region and minimal time (2018) (https://arxiv.org/abs/1807.01241) | Zbl 07198266

[20] Fattorini, Hector O.; Russell, D. L. Exact controllability theorems for linear parabolic equations in one space dimension, Arch. Ration. Mech. Anal., Volume 43 (1971), pp. 272-292 | Article | MR MR0335014 | Zbl 0231.93003

[21] Fernández-Cara, Enrique; Zuazua, Enrique The cost of approximate controllability for heat equations: the linear case, Adv. Differ. Equ., Volume 5 (2000) no. 4-6, pp. 465-514 | MR MR1750109 | Zbl 1007.93034

[22] Fursikov, Andreĭ V.; Imanuvilov, Oleg Y. Controllability of evolution equations, Lecture Notes Series, Seoul, Volume 34, Seoul National University, 1996, iv+163 pages | MR MR1406566 | Zbl 0862.49004

[23] Gueye, Mamadou Exact boundary controllability of 1-D parabolic and hyperbolic degenerate equations, SIAM J. Control Optimization, Volume 52 (2014) no. 4, pp. 2037-2054 | Article | MR 3227458 | Zbl 1327.35211

[24] Helffer, Bernard Semi-classical analysis for the Schrödinger operator and applications, Lecture Notes in Mathematics, Volume 1336, Springer, 1988, vi+107 pages | Article | MR 960278 | Zbl 0647.35002

[25] Imanuvilov, Oleg Y.; Yamamoto, Masahiro Lipschitz stability in inverse parabolic problems by the Carleman estimate, Inverse Probl., Volume 14 (1998) no. 5, pp. 1229-1245 | Article | MR 1654631 | Zbl 0992.35110

[26] Koenig, Armand Non-null-controllability of the Grushin operator in 2D, C. R. Math. Acad. Sci. Paris, Volume 355 (2017) no. 12, pp. 1215-1235 | Article | MR 3730500 | Zbl 1377.93044

[27] Le Rousseau, Jérôme; Moyano, Iván Null-controllability of the Kolmogorov equation in the whole phase space, J. Differ. Equations, Volume 260 (2016) no. 4, pp. 3193-3233 | Article | MR 3434397 | Zbl 1332.35135

[28] Lebeau, Gilles; Robbiano, Luc Contrôle exact de l’équation de la chaleur, Commun. Partial Differ. Equations, Volume 20 (1995) no. 1-2, pp. 335-356 | Article | MR MR1312710 | Zbl 0819.35071

[29] Martinez, Patrick; Vancostenoble, Judith Carleman estimates for one-dimensional degenerate heat equations, J. Evol. Equ., Volume 6 (2006) no. 2, pp. 325-362 | Article | MR 2227700 | Zbl 1179.93043

[30] Miller, Luc The control transmutation method and the cost of fast controls, SIAM J. Control Optimization, Volume 45 (2006) no. 2, pp. 762-772 | Article | MR MR2246098 | Zbl 1109.93009

[31] Morancey, Morgan Approximate controllability for a 2D Grushin equation with potential having an internal singularity, Ann. Inst. Fourier, Volume 65 (2015) no. 4, pp. 1525-1556 | Article | Numdam | MR 3449189 | Zbl 1331.93023

[32] Tucsnak, Marius; Weiss, George Observation and control for operator semigroups, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser, 2009, xii+483 pages | Article | MR 2502023 | Zbl 1188.93002

[33] Yamamoto, Masahiro Carleman estimates for parabolic equations and applications, Inverse Probl., Volume 25 (2009) no. 12, 123013, 75 pages | MR 3460049 | Zbl 1194.35512