The Plateau problem for convex curvature functions
[Le problème de Plateau pour des fonctions de courbure convexes]
Annales de l'Institut Fourier, Tome 70 (2020) no. 1, pp. 1-66.

Nous étudions le problème de Plateau paramétrique dans des variétés riemanniennes générales pour des hypersurfaces localement strictement convexes (LSC) et à courbure prescrite pour une classe générale de fonctions de courbure convexes. Nous établissons une condition scalaire pour l’existence de solutions dans le cas où il existe une barrière externe et la variété ambiante est une variété d’Hadamard

We present a novel and comprehensive approach to the study of the parametric Plateau problem for locally strictly convex (LSC) hypersurfaces of prescribed curvature for general convex curvature functions inside general Riemannian manifolds. We prove existence of solutions to the Plateau problem with outer barrier for LSC hypersurfaces of constant or prescribed curvature for general curvature functions inside general Hadamard manifolds modulo a single scalar condition. In particular, convex curvature functions of bounded type are fully treated.

Reçu le :
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/aif.3308
Classification : 58E12,  35J25,  35J60,  53C21,  53C42
Mots clés : problème de Plateau, EDPs elliptiques non linéaires
@article{AIF_2020__70_1_1_0,
     author = {Smith, Graham},
     title = {The {Plateau} problem for convex curvature functions},
     journal = {Annales de l'Institut Fourier},
     pages = {1--66},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {70},
     number = {1},
     year = {2020},
     doi = {10.5802/aif.3308},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3308/}
}
Smith, Graham. The Plateau problem for convex curvature functions. Annales de l'Institut Fourier, Tome 70 (2020) no. 1, pp. 1-66. doi : 10.5802/aif.3308. https://aif.centre-mersenne.org/articles/10.5802/aif.3308/

[1] Caffarelli, Luis; Kohn, Joseph J.; Nirenberg, Louis; Spruck, Joel The Dirichlet problem for nonlinear second-order elliptic equations. II. Complex Monge–Ampère, and uniformly elliptic, equations, Commun. Pure Appl. Math., Volume 38 (1985) no. 2, pp. 209-252 | Article | MR 780073 | Zbl 0598.35048

[2] Caffarelli, Luis; Nirenberg, Louis; Spruck, Joel The Dirichlet problem for nonlinear second-order elliptic equations. I. Monge–Ampère equation, Commun. Pure Appl. Math., Volume 37 (1984) no. 3, pp. 369-402 | Article | MR 739925 | Zbl 0598.35047

[3] Caffarelli, Luis; Nirenberg, Louis; Spruck, Joel The Dirichlet problem for nonlinear second-order elliptic equations. III. Functions of the eigenvalues of the Hessian, Acta Math., Volume 155 (1985) no. 3-4, pp. 261-301 | Article | MR 806416 | Zbl 0672.35028

[4] Caffarelli, Luis; Nirenberg, Louis; Spruck, Joel Nonlinear second-order elliptic equations. V. The Dirichlet problem for Weingarten hypersurfaces, Commun. Pure Appl. Math., Volume 41 (1988) no. 1, pp. 47-70 | Article | MR 917124 | Zbl 0672.35028

[5] Gilbarg, David; Trudinger, Neil S. Elliptic partial differential equations of second order, Classics in Mathematics, Springer, 2001, xiv+517 pages (Reprint of the 1998 edition) | MR 1814364 | Zbl 1042.35002

[6] Guan, Bo; Spruck, Joel Boundary-value problems on S n for surfaces of constant Gauss curvature, Ann. Math., Volume 138 (1993) no. 3, pp. 601-624 | Article | MR 1247995 | Zbl 0840.53046

[7] Guan, Bo; Spruck, Joel The existence of hypersurfaces of constant Gauss curvature with prescribed boundary, J. Differ. Geom., Volume 62 (2002) no. 2, pp. 259-287 http://projecteuclid.org/euclid.jdg/1090950194 | Article | MR 1988505 | Zbl 1070.58013

[8] Guan, Bo; Spruck, Joel Locally convex hypersurfaces of constant curvature with boundary, Commun. Pure Appl. Math., Volume 57 (2004) no. 10, pp. 1311-1331 | Article | MR 2069725 | Zbl 1066.53109

[9] Guan, Bo; Spruck, Joel Convex hypersurfaces of constant curvature in hyperbolic space, Surveys in geometric analysis and relativity (Advanced Lectures in Mathematics (ALM)) Volume 20, International Press., 2011, pp. 241-257 | MR 2906928 | Zbl 1268.53065

[10] Ivočkina, Nina M. A priori estimate of |u| C 2 (Ω ¯) of convex solutions of the Dirichlet problem for the Monge–Ampère equation, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov., Volume 96 (1980), pp. 69-79 | MR 579472 | Zbl 0472.35040

[11] Labourie, François Un lemme de Morse pour les surfaces convexes, Invent. Math., Volume 141 (2000) no. 2, pp. 239-297 | Article | MR 1775215 | Zbl 0981.52002

[12] Rosenberg, Harold; Smith, Graham Degree Theory of Immersed Hypersurfaces (2010) (https://arxiv.org/abs/1010.1879)

[13] Sheng, Weimin; Urbas, John; Wang, Xu-Jia Interior curvature bounds for a class of curvature equations, Duke Math. J., Volume 123 (2004) no. 2, pp. 235-264 | Article | MR 2066938 | Zbl 1174.35378

[14] Smith, Graham The non-linear Dirichlet problem in Hadamard manifolds (http://www.crm.cat/en/Publications/Publications/2009/Preprints/Pr870.pdf) | Zbl 1270.58014

[15] Smith, Graham An Arzela–Ascoli theorem for immersed submanifolds, Ann. Fac. Sci. Toulouse, Math., Volume 16 (2007) no. 4, pp. 817-866 | Article | Numdam | MR 2789720 | Zbl 1158.53046

[16] Smith, Graham Moduli of flat conformal structures of hyperbolic type, Geom. Dedicata, Volume 154 (2011), pp. 47-80 | Article | MR 2832711 | Zbl 1231.53012

[17] Smith, Graham Compactness results for immersions of prescribed Gaussian curvature I. Analytic aspects, Adv. Math., Volume 229 (2012) no. 2, pp. 731-769 | Article | MR 2855077 | Zbl 1236.53053

[18] Smith, Graham The non-linear Plateau problem in non-positively curved manifolds, Trans. Am. Math. Soc., Volume 365 (2013) no. 3, pp. 1109-1124 | Article | MR 3003259 | Zbl 1270.58014

[19] Smith, Graham Special Lagrangian curvature, Math. Ann., Volume 355 (2013) no. 1, pp. 57-95 | Article | MR 3004576 | Zbl 1271.53059

[20] Smith, Graham Compactness for immersions of prescribed Gaussian curvature II: geometric aspects, Geom. Dedicata, Volume 172 (2014), pp. 303-350 | Article | MR 3253784 | Zbl 1304.53061

[21] Smith, Graham Global singularity theory for the Gauss curvature equation, Ensaios Matemáticos, Volume 28, Sociedade Brasileira de Matemática, 2015, 114 pages | MR 3363142 | Zbl 1334.53003

[22] Spruck, Joel Fully nonlinear elliptic equations and applications to geometry, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) (1995), pp. 1145-1152 | Article | MR 1404014 | Zbl 0851.35036

[23] Trudinger, Neil S. On the Dirichlet problem for Hessian equations, Acta Math., Volume 175 (1995) no. 2, pp. 151-164 | Article | MR 1368245 | Zbl 0887.35061

[24] Trudinger, Neil S.; Wang, Xu-Jia On locally convex hypersurfaces with boundary, J. Reine Angew. Math., Volume 551 (2002), pp. 11-32 | Article | MR 1932171 | Zbl 1020.53002

[25] White, Brian The space of m-dimensional surfaces that are stationary for a parametric elliptic functional, Indiana Univ. Math. J., Volume 36 (1987) no. 3, pp. 567-602 | Article | MR 905611 | Zbl 0613.58009

[26] White, Brian The space of minimal submanifolds for varying Riemannian metrics, Indiana Univ. Math. J., Volume 40 (1991) no. 1, pp. 161-200 | Article | MR 1101226 | Zbl 0742.58009