Homotopy groups of generic leaves of logarithmic foliations
Annales de l'Institut Fourier, Volume 69 (2019) no. 6, p. 2811-2824

We study the homotopy groups of generic leaves of logarithmic foliations on complex projective manifolds. We exhibit a relation between the homotopy groups of a generic leaf and of the complement of the polar divisor of the logarithmic foliation.

Nous étudions les groupes d’homotopie des feuilles génériques des feuilletages logarithmiques sur les variétes projetives complexes. Nous montrons une relation entre les groupes d’homotopie d’une feuille générique et ceux du complement du diviseur des pôles du feuilletage logarithmique.

Received : 2017-11-17
Revised : 2018-05-10
Accepted : 2019-01-17
Published online : 2019-10-29
DOI : https://doi.org/10.5802/aif.3307
Classification:  14J99,  32Q55,  55Q52
Keywords: Holomorphic foliations, Logarithmic, Topology of leaves
@article{AIF_2019__69_6_2811_0,
     author = {Rodr\'\i guez-Guzm\'an, Diego},
     title = {Homotopy groups of generic leaves of logarithmic foliations},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {69},
     number = {6},
     year = {2019},
     pages = {2811-2824},
     doi = {10.5802/aif.3307},
     language = {en},
     url = {https://aif.centre-mersenne.org/item/AIF_2019__69_6_2811_0}
}
Rodríguez-Guzmán, Diego. Homotopy groups of generic leaves of logarithmic foliations. Annales de l'Institut Fourier, Volume 69 (2019) no. 6, pp. 2811-2824. doi : 10.5802/aif.3307. https://aif.centre-mersenne.org/item/AIF_2019__69_6_2811_0/

[1] Cerveau, Dominique Quelques problèmes en géométrie feuilletée pour les 60 années de l’IMPA, Bull. Braz. Math. Soc. (N.S.), Tome 44 (2013) no. 4, p. 653-79 | Article | Zbl 1333.37061

[2] Cukierman, Fernando; Soares, Marcio G.; Vainsencher, Israel Singularities of logarithmic foliations, Compos. Math., Tome 142 (2006) no. 1, pp. 131-142 | Article | MR 2197406 | Zbl 1097.32011

[3] Davis, James F.; Kirk, Paul Lecture notes in algebraic topology, American Mathematical Society, Graduate Studies in Mathematics, Tome 35 (2001) | MR 1841974 | Zbl 1018.55001

[4] Dimca, Alexandru Singularities and topology of hypersurfaces, Springer, Universitext (2012) | Zbl 0753.57001

[5] Dũng Tráng, Lê; Hamm, Helmut A. Un théorème de Zariski du type de Lefschetz, Ann. Sci. Éc. Norm. Supér., Tome 6 (1973) no. 3, pp. 317-355 | Zbl 0276.14003

[6] Hatcher, Allen Algebraic topology, Cambridge University Press (2002) | MR 1867354 | Zbl 1044.55001

[7] Libgober, Anatoly Homotopy groups of complements to ample divisors (2004) (https://arxiv.org/abs/math/0404341) | Zbl 1134.14014

[8] Milnor, John Singular points of complex hypersurfaces., Princeton University Press, Annals of Mathematics Studies, Tome 61 (2016) | Zbl 0184.48405

[9] Simpson, Carlos Lefschetz theorems for the integral leaves of a holomorphic one-form, Compos. Math., Tome 87 (1993) no. 1, pp. 99-113 | MR 1219454 | Zbl 0802.57004