
ANNALES DE
L’INSTITUT FOURIER

Université Grenoble Alpes

Les Annales de l’institut Fourier sont membres du
Centre Mersenne pour l’édition scienti�que ouverte
www.centre-mersenne.org

Diego Rodríguez-Guzmán
Homotopy groups of generic leaves of logarithmic foliations
Tome 69, no 6 (2019), p. 2811-2824.
<http://aif.centre-mersenne.org/item/AIF_2019__69_6_2811_0>

© Association des Annales de l’institut Fourier, 2019,
Certains droits réservés.

Cet article est mis à disposition selon les termes de la licence
Creative Commons attribution – pas de modification 3.0 France.
http://creativecommons.org/licenses/by-nd/3.0/fr/

www.centre-mersenne.org
http://aif.centre-mersenne.org/item/AIF_2019__69_6_2811_0
http://creativecommons.org/licenses/by-nd/3.0/fr/


Ann. Inst. Fourier, Grenoble
69, 6 (2019) 2811-2824

HOMOTOPY GROUPS OF GENERIC LEAVES OF
LOGARITHMIC FOLIATIONS

by Diego RODRÍGUEZ-GUZMÁN (*)

Abstract. — We study the homotopy groups of generic leaves of logarithmic
foliations on complex projective manifolds. We exhibit a relation between the ho-
motopy groups of a generic leaf and of the complement of the polar divisor of the
logarithmic foliation.
Résumé. — Nous étudions les groupes d’homotopie des feuilles génériques des

feuilletages logarithmiques sur les variétes projetives complexes. Nous montrons
une relation entre les groupes d’homotopie d’une feuille générique et ceux du com-
plement du diviseur des pôles du feuilletage logarithmique.

1. Introduction

A logarithmic foliation F on a complex projective manifold X is defined
by a closed logarithmic 1-form ω with polar locusD =

∑
j Dj , withDj irre-

ducible hypersurface of X. Here L denotes a non singular leaf of F , which
is an immersed complex manifold of codimension one in X. In general,
L is a transcendental leaf, that is, it is not contained in any projective
hypersurface of X.

We will consider the following topological properties of complex projec-
tive manifolds:

(i) If X is a smooth hypersurface of the projective space Pn+1 with
n > 1, then X is simply connected.

Also, if a complex projective manifold X, with dimension n, lies in Pm and
H ⊂ Pm is a general hyperplane, the Lefschetz hyperplane section theorem,
implies that the following assertions hold:
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(ii) If n > 1 then the hyperplane section X ∩H is connected.
(iii) If n > 2 then the fundamental groups of X and X ∩H are isomor-

phic.
Based on the statements above, Dominique Cerveau in [1, Section 2.10]

proposes to study which conditions over a logarithmic foliation F on a
complex projective manifold are sufficient for a generic leaf L of F to satisfy
these topological properties.
In this article, we shall study this issue using Homotopy Theory. Our

first result exhibits a relation between the homotopy groups of a generic
leaf L and of the complement X −D of the polar divisor D of the closed
logarithmic 1-form ω defining the foliation F on a complex projective man-
ifold X.

Theorem 1.1. — Let F , ω,D,X satisfy the above assumptions, with
dimCX = n+ 1 and n > 1. If D is a simple normal crossing ample divisor,
then the fundamental group of L is isomorphic to the group

G :=
{

[γ] ∈ π1(X −D)
∣∣∣∣ ∫
γ

ω = 0
}
,

where γ is a closed curve in X −D. Furthermore, the morphisms of homo-
topy groups

i∗ : πl(L)→ πl(X −D),
induced by the inclusion i : L ↪→ X −D are isomorphisms if 1 < l < n and
epimorphisms if l = n.

If X is the projective space Pn+1, we prove the following Lefschetz
hyperplane section type theorem.

Theorem 1.2. — Let F be a logarithmic foliation defined by a logarith-
mic 1-form ω on Pn+1, n > 1, with a simple normal crossing polar divisor
D. Let H ⊂ Pn+1 be a hyperplane such that H∩D is a reduced divisor with
simple normal crossings inH. Suppose the leaves L,L∩H are generic leaves
of F ,F|H respectively. Then the morphism between homotopy groups

(i)∗ : πl(L ∩H)→ πl(L),

induced by the inclusion i : L ∩H ↪→ L is
(1) an isomorphism if l < n− 1,
(2) an epimorphism if l = n− 1.

This result shows that the claims (ii) and (iii) are true for generic leaves of
logarithmic foliations on Pn+1. For generic logarithmic foliations on Pn+1,
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Theorem 1.1 implies that this foliations have simply connected generic
leaves.
In order to prove these results we shall adapt a result of Carlos Simp-

son [9, Corollary 21], which concerns the topology of integral varieties of a
closed holomorphic 1-form on a projective variety.

2. Generic leaves of logarithmic foliations

Let ω be a closed logarithmic 1-form on a complex projective manifold
X with polar divisor D =

∑
Di. Note that for any point p ∈ X there is a

neighborhood U of p in X such that ω|U can be written as

(2.1) ω0 +
r∑
j=1

λj
dfj
fj
,

where ω0 is a closed holomorphic 1-form on U , λj ∈ C∗ and fj ∈ O(U),
and {fj = 0}, j = 1, . . . , r, are the reduced equations of the irreducible
components of D ∩ U .

If the polar divisor D ⊂ X is simple normal crossing, then each irre-
ducible component of D is smooth and locally near of each point D can
be represented in a chart (xi) : U → M as the locus {x0 · · ·xk = 0} with
k + 1 6 dim(X). Moreover, there is a coordinate chart (U, (yj)) for each
point q ∈ X such that ω can be written as

(2.2) ((yj)−1)∗ω =
k∑
j=0

λj
dyj
yj
.

Consider a singular point p of ω not in Sing(D). Since D is simple normal
crossing, (2.2) shows that the connected component Sp of {x∈X |ω(x) = 0},
which contains p, has empty intersection with D (see [2, Theorem 3] for
more details). When D is an ample divisor in X, then any complex subva-
riety of dimension greater than zero has nonempty intersection with D. In
particular, we have the following result.

Lemma 2.1. — Let ω, p, Sp be as above. If D is a simple normal crossing
ample polar divisor of ω, then Sp is the isolated point p.

A closed logarithmic 1-form ω on X with polar divisor D defines the
following group morphism

(2.3)
φ : π1(X −D) → (C,+)

[γ] 7→
∫
γ
ω,
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where γ is a closed curve in X − D. Consider a normal subgroup G of
π1(X − D), which is contained in kerφ. The group G defines a regular
covering space ρ : Y → X − D with the property that ρ∗(π1(Y )) = G.
Taking a closed curve η : I → Y we see that [ρ ◦ η] ∈ kerφ. We thus get∫

η

ρ∗ω =
∫
ρ◦η

ω = 0.

Consequently, for a fixed point y0 ∈ Y the function

(2.4) g(y) =
∫ y

y0

ρ∗ω

is well defined for y ∈ Y . In this way, we obtain what will be referred to as
a ω-exact covering space of X −D.
If the kernel of φ is a non trivial group, then there are at least two

ω-exact covering spaces of X−D: the universal cover and the regular cover
ρ : Y → X −D such that ρ∗(π1(Y )) = kerφ.
The following theorem is an adaptation of [9, Corollary 21], which allows

us to exhibit relations between the homotopy groups of a cover of an in-
tegral manifold of ω and the regular cover of the complement of the polar
divisor of ω.

Theorem 2.2 (Lefschetz–Simpson Theorem). — Let ω be a closed log-
arithmic 1-form on a projective manifold X of dimension n + 1, n > 1.
Assume that the polar divisor D of ω is simple normal crossing ample di-
visor. Then for a ω-exact covering space ρ : Y → X − D and a function
g (2.4), the pair (Y, g−1(c)) is n-connected for any c ∈ C.

The n-connectedness of the pair (Y, g−1(c)) is equivalent to the mor-
phisms of homotopy groups

πi(g−1(c))→ πi(Y ),

induced by the inclusion g−1(c) ↪→ Y being isomorphisms if i < n and
epimorphism for i = n.

The statement above will be proved in the next section. We will use
this theorem and standard techniques of Homotopy Theory to prove the
Theorems 1.1 and 1.2.

Now, we study the homotopy groups of generic leaves L of F . The fol-
lowing relation between homotopy groups of a path connected topological
space Y and its regular covering space ρ : Ỹ → Y will be very useful.

The covering space projection ρ induces isomorphisms

ρ∗ : πi(Ỹ , ỹ0)→ πi(Y, y0),
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with ỹ0 ∈ ρ−1(y0), between homotopy groups of dimension greater than 1.

Definition 2.3. — Let F be a logarithmic foliation on X defined by a
closed logarithmic 1-form ω with polar divisor D. Let ρ : Y → X −D and
g : Y → C be as above. We will say that a leaf L of F is generic if for some
component C of ρ−1(L) the value of g on C is a regular value of g.

Proposition 2.4. — Under the conditions stated above, we assume
that the polar divisor D of ω is a simple normal crossing ample divisor.
Then there exists a ω-exact covering space ρ : Y → X − D such that for
a primitive g of ρ∗ω defined by (2.4) the inverse image g−1(c) of a regular
value c ∈ C is biholomorphic to a generic leaf L of F .

Proof. — Consider the ω-exact covering space ρ : Y → X −D satisfying
ρ∗(π1(Y )) = kerφ, with φ defined by (2.3). Write G = kerφ.

We will show that for a regular value c ∈ C of g the restriction

ρ|g−1(c) : g−1(c)→ L

is a biholomorphism.
Suppose not. Then there exist distinct points y0, y1 ∈ ρ−1(x0), with

x0 ∈ L, such that y0, y1 ∈ g−1(c).
Take γ̃ : I → Y with γ̃(0) = y0 y γ̃(1) = y1. Since n > 1, Theorem 2.2

implies that the pair (Y, g−1(c)) is 1-connected. This implies that there
exists γ′ contained in g−1(c) homotopic to γ̃ with fixed endpoints. Therefore
γ = ρ ◦ γ′ is a curve in L which is not homotopically trivial in X −D. But
since it is contained in a leaf of the foliation we have that∫

γ

ω = 0.

Hence γ is homotopic to an element of G a contradiction. Thus ρ|g−1(c) is
a biholomorphism. This is the desired conclusion. �

Proof of Theorem 1.1. — Let ρ : Y → X−D be the ω-exact cover given
by Proposition 2.4. By Theorem 2.2, the morphisms

((ρ|g−1(c))−1 ◦ i)∗ : πl(L)→ πl(Y )

are isomorphisms if l < n and epimorphisms if l = n, where the map ρ|g−1(c)
is the biholomorphism between g−1(c) and L, and i : L ↪→ X − D is the
inclusion map. As n is greater than 1 we have that π1(L) is isomorphic to

π1(Y ) ∼=
{

[γ] ∈ π1(X −D)
∣∣∣∣ ∫
γ

ω = 0
}
.

TOME 69 (2019), FASCICULE 6
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Since Y is a covering space of X − D, it follows that the morphisms
(ρ)∗ between the groups πl(Y ) and πl(X −D) are isomorphisms if l > 1.
Therefore the morphisms

i∗ : πl(L)→ πl(X −D)

are isomorphisms if 1 < l < n and epimorphisms if l = n. �

We will use the statements in [4, 5, 7] about the topology of the comple-
ment of a divisor in a projective manifold to establish the results below.

Let H be an abelian free group generated by the components Di of a
divisor D ⊂ X. If X is simply connected and each irreducible component
of the simple normal crossing divisor D =

∑k
i=0Di is ample, Corollary 2.2

of [7] implies that the fundamental group of the complement X − D is
isomorphic to the cokernel of the morphism

h : H2(X,Z) → H

a 7→
∑k
i=0(a,Di)Di,

where (a,Di) is the Kronecker pairing, here we associate Di with its Chern
class in H2(X,Z) (see [3, p. 15] for more details). If X is the projective
space Pn+1, then the image of the morphism h is generated by (d0, . . . , dk),
where di is the degree of Di. In particular, we have the following result

Corollary 2.5. — Under the hypotheses of Theorem 1.1, if X = Pn+1

then the fundamental group of a generic leaf L is isomorphic to the following
group {

(m0, . . . ,mk) ∈ Zk+1

∣∣∣∣∣
k∑
i=0

λimi = 0
}
/Z(d0, . . . , dk),

where λi = Res(Di, ω) are the residues of ω around Di.

Example 2.6. — Let us consider the case where the polar divisor of the
logarithmic 1-form ω has only two irreducible components, say D0 and
D1. If the degrees d0, d1 are equal then the leaves L of the foliation F are
contained in elements of the pencil

{aF0 + bF1|(a : b) ∈ P1}.

In particular the generic leaf L is of the form {aF0 + bF1 = 0} − D for
(a : b) generic. The Corollary 2.5 implies that

π1(L) = Z
dZ

,

which is the torsion subgroup of π1(P3 −D).
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Corollary 2.7. — Let Xn+1 be a complete intersection in PN . Let D
be an arrangement of hyperplanes in PN such that D∩X is simple normal
crossing in X. If a logarithmic foliation F on X has polar divisor D ∩ X
then any generic leaf of F satisfies πl(L) = 0 for 1 < l < n.

Proof. — From Theorem 1.1 the homotopy groups of dimension l, with
1 < l < n, of a generic leaf are isomorphic to the respective homotopy
groups of X −D. By [7, Theorem 2.4] the homotopy groups of X −D of
dimension 1 < l < n are trivial, and the corollary follows. �

Let ω be a closed logarithmic 1-form as in Corollary 2.5. The residues
{λj}kj=0 of ω are non resonant if all integer solutions (m0, . . . ,mk) ∈ Zk+1

of the equation
∑k
j=0mjλj = 0 are contained in Z(d′0, . . . , d′k), where

d′j · gcd(d0, . . . , dk) = dj .
If the residues {λj}kj=0 are non resonant and gcd(d0, . . . , dk) = 1, the

Corollary 2.5 implies that the generic leaf L of the foliation F defined by
ω has trivial fundamental group. Therefore we deduce from Corollary 2.7,

Corollary 2.8. — Under the assumptions of Corollary 2.5, if moreover
dj = 1 and the residues λi are non resonant. Then the generic leaf L of the
foliation F is (n− 1)-connected.

Next result gives a relation between the homotopy groups of a generic
leaf of a logarithmic foliation on Pn+1 and its general hyperplane sections.

Proof of Theorem 1.2. — Let D(H) = H ∩ D. The inclusion i from
H −D(H) to Pn+1 −D induces the morphisms

(2.5) i∗ : πl(H −D(H))→ πl(Pn+1 −D)

in homotopy. From the Lefschetz–Zariski type [5, Theorem 0.2.1] we have
that i∗ is an isomorphism for l < n and an epimorphism for l = n.

Consider the regular cover ρ : Y → Pn+1 −D given by Proposition 2.4.
Let g be a primitive of ρ∗ω. Let Y (H) = ρ−1(H − D(H)). Notice that
Y (H) is a connected regular covering space of H − D(H). Let gH be the
restriction of g to Y (H). Let c ∈ C be a regular value of g and gH . Since
l 6 n− 1, Theorem 2.2 implies that the morphisms

i∗ : πl(g−1(c))→ πl(Y ) and i∗ : πl(g−1
H (c))→ πl(Y (H))

induced by the inclusion Y (H) ↪→ Y , are isomorphisms if l < n − 1 and
epimorphisms if l = n−1. Considering the long exact sequence of homotopy

TOME 69 (2019), FASCICULE 6
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groups we obtain the following commutative diagram for l > 0:

· · · // πl+1(Y (H), g−1
H (c)) //

��

πl(g−1
H (c)) //

��

πl(Y (H)) //

��

· · ·

· · · // πl+1(Y, g−1(c)) // πl(g−1(c)) // πl(Y ) // · · ·

Since Y, Y (H) are covers of Pn+1 − D,H − D(H) respectively, the mor-
phism (2.5) shows that the morphisms

πl(Y (H))→ πl(Y )

are isomorphisms for l < n and epimorphisms for l = n. Analogously,
Theorem 2.2 implies that the morphisms πl(Y (H), g−1

H (c))→ πl(Y, g−1(c))
are isomorphisms for l < n and epimorphisms for l = n. Applying the
five Lemma, we have that the morphisms πl(g−1

H (c)) → πl(g−1(c)) are
isomorphisms for l < n − 1 and epimorphisms for l = n − 1. Hence the
theorem follows from the biholomorphism given by Proposition 2.4. �

This verifies the claim (iii) for generic leaves of logarithmic foliations on
projective spaces.

3. Lefschetz–Simpson Theorem

In order to prove the Theorem 1.2 we adapt the proof of [9, Theorem 1] to
the case of logarithmic closed 1-forms with a simple normal crossing ample
polar divisor. One of the key steps in the proof of Theorem 2.2 consists in
establishing an Ehresmann type result for the function g outside an open
neighborhood of the singular locus of ρ∗ω. Before proving Theorem 2.2 we
will need to introduce some notation and to establish some preliminary
results. Also, we follow the notation used in [9].
We will use some properties in [6, 9] about Homotopy Theory to establish

the statements bellow.

Singular Theory

Under the hypotheses of Theorem 2.2, the Lemma 2.1 implies that the
singular locus of ω in X −D is a finite union of isolated points. Let {pi}
be the finite set of isolated singularities of ω in X −D. Fix a metric µ on
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X. Since X is compact, µ is complete. We can choose ε1 > 0 sufficiently
small such that the closed balls

Bµ(pi, ε1) = Mi

are pairwise disjoint and the restriction of ω to an open neighborhood of
Mi is exact. We define primitives gi(x) =

∫ x
pi
ω for x ∈ Mi. Since the

points pi are isolated singularities, it follows from [8, Theorems 4.8, 5.10]
the existence of ε2 > 0 sufficiently small such that

(1) 0 ∈ B(0, ε2) ⊂ C is the unique critical value for the primitive gi;
(2) the intersections g−1

i (0)∩ ∂Mi and g−1
i (B(0, ε2))∩ ∂Mi = Ti are

smooth, and the restriction of ω to Ti is a 1-form on Ti which never
vanishes.

Lemma 3.1. — Let Fi = g−1
i (0) and Ei = g−1

i (c) with c ∈ B(0, ε2)−{0}
be fibers of gi restricted to

Ni = Mi ∩ g−1
i (B(0, ε2)).

For small ε2 the pair (Ni, Fi) is l-connected for every l ∈ N and the pair
(Ni, Ei) is n-connected.

Proof. — For ε2 sufficiently small [8, Theorem 5.2] implies that Fi is a
deformation retract of Ni. Therefore the pair (Ni, Fi) is l-connected for any
l ∈ N.
We know from [8, Theorems 5.11, 6.5] that Ei has the homotopy type of

a bouquet of spheres Sn ∨ · · · ∨ Sn for ε2 sufficiently small. Thus the fiber
Ei is (n−1)-connected. Since the neighborhood Ni can be contracted to pi
the long exact sequence of Homotopy Theory implies that the pair (Ni, Ei)
is n-connected. �

Ehresmann type result

Let ρ : Y → X − D be a ω-exact covering space and the function g a
primitive of ρ∗ω. We will use j ∈ Ji as an index set for the points p̃j of the
discrete set ρ−1(pi) and we will denote the union ∪Ji by J . Fix ε1, ε2 > 0
sufficiently small such that

• in each connected component M̃j of ρ−1(Mi) containing the point
p̃j , the restriction of ρ in M̃j is a biholomorphism; and

• the subsets Ni, Ti, Fi, Ei and the function gi satisfy the properties
above for every i.

TOME 69 (2019), FASCICULE 6
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We define a primitive g̃j = gi ◦ ρ for the restriction of ρ∗ω to M̃j such that
g|
M̃j

= g̃j + aj for some aj ∈ C, with j ∈ Ji. The subsets Ñj , T̃j , F̃j , Ẽj of

M̃j are the analogues of the subsets Ni, Ti, Fi, Ei of Mi.
We choose δ such that 0 < 5δ < ε2. For each b ∈ C, we define the

subset J(b) of J formed by the indexes j such that |b − aj | < 3δ. Let
Ub = B(b, δ) ⊂ C and define the open subset of the covering space Y

W (b) = g−1(Ub) ∩

 ⋃
j∈J(b)

Ñ◦j

 ,

where Ñ◦j denotes the interior of Ñj , which satisfies (g−1(Ub)−W (b))∩W (b)
is contained in

⋃
j∈J(b) T̃j .

We can now formulate our Ehresmann type result.

Proposition 3.2. — There exists a trivialization of g−1(Ub) − W (b)
with trivializing diffeomorphism

Φ : Ub × (g−1(b)−W (b))→ g−1(Ub)−W (b),

such that the restriction to the boundary satisfies

Φ(Ub × (g−1(b)−W (b)) ∩W (b)) = (g−1(Ub)−W (b)) ∩W (b).

Proof. — For each point q in the polar divisor D ⊂ X of the logarithmic
1-form ω, we have a coordinate chart (V (q), ψ) such that

(3.1) ω = ψ∗

r(q)∑
j=1

λj
dyj
yj

 .

We can take a finite number of points qβ ∈ D with coordinate charts
(Vβ , ψβ) satisfying (3.1) and such that the union ∪βVβ covers D.
Let Ui ⊂ Ni be open balls containing the singular points of ω in X −D

such that the diameter of gi(Ui) is smaller than δ/10. Using partition of
unity we construct two C∞ complete real vector fields u, v on X such that

(1) their restrictions in Vβ satisfy that

Dψβ(u) =
r(qβ)∑
j=1

yj
λj

∂

∂yj
, Dψβ(v) =

√
−1

r(qβ)∑
j=1

yj
λj

∂

∂yj
,

(2) at any point p in X − (
⋃
β Vβ ∪

⋃
i Ui) they satisfy ω(up) = 1,

ω(vp) =
√
−1 and if p belongs to Ti then these vector fields are

tangent to Ti;
(3) their restriction to Ui vanishes in pi.

ANNALES DE L’INSTITUT FOURIER
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The vector fields u, v leave the divisor D invariant. It follows that the
restriction of u, v to X −D are still complete vector fields and they satisfy
ω(u) = 1, ω(v) =

√
−1 outside of D ∪ (∪iUi).

Let ũ, ṽ be the liftings of u, v with respect to Y . Notice that the
vector fields ũ, ṽ are complete vector fields on Y , which restricted to
g−1(Ub) − W (b) satisfy ρ∗ω(ũ) = 1, ρ∗ω(ṽ) =

√
−1. It implies the exis-

tence of the diffeomorphism

Φ : Ub × (g−1(b)−W (b)) → g−1(Ub)−W (b)
(t1 + b, t2 + b)× {q} 7→ Φ1(t1,Φ2(t2, q)),

where Φ1,Φ2 are flows of ũ, ṽ, respectively. The vector fields ũ, ṽ are tangent
to T̃j for every j ∈ J . In particular, they are tangent to ∪j∈J(b)T̃j . It follows
that

Φ(Ub × (g−1(b)−W (b))∩W (b)) = (g−1(Ub)−W (b))− (g−1(∂Ub)∩W (b))

as we wanted. �

Example 3.3. — Let ω be a closed logarithmic 1-form on Pn+1, with a
simple normal crossing polar divisor D = H0 + · · ·+Hk with 1 6 k 6 n+1.
Let Hj be hyperplanes defined by Hj = {zj = 0} where [z0 : · · · : zn+1] are
homogeneous coordinates for Pn+1. Take the universal covering

ρ : Cn+1 → Pn+1 −D
[1 : x1 : · · · : xn+1] 7→ [1 : e2π

√
−1x1 : · · · : e2π

√
−1xk : xk+1 : · · · : xn+1].

If we denote the residues by Res(ω,Hj) = λj , then the pull-back ρ∗ω admits
the following expression

2π
√
−1

k∑
j=0

λjdxj ,

which is a linear 1-form on Cn+1. In this case, there are no singularities
outside the divisor and the primitive g of ρ∗ω is a fibration of Cn+1 with
fiber Cn. In particular, the pair (Cn+1, g−1(c)) is l-connected for every l.

Example 3.4. — Consider the closed rational 1-form

ω = d

(
x2 + y2 + z2

xy

)
in homogeneous coordinates [x : y : z] of P2. The polar divisor D of
ω has only two irreducible components D0 = {x = 0}, D1 = {y = 0},
with D = 2D0 + 2D1. The singularities of ω outside of D are the points
p1 = [1 : 1 : 0], p2 = [−1 : 1 : 0].
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The 1-form ω is exact in P2 − D. The leaves of the foliation F defined
by ω in P2 −D coincide with

{x2 + y2 + z2 − αxy = 0} −D with α ∈ C.

If we assume that Proposition 3.2 is true in this situation, we would have
for δ > 0 sufficiently small a diffeomorphism

Φ : g−1(B(2, δ))−W (2) ∼= B(2, δ)×
(
g−1(2)−W (2)

)
.

But this is impossible since the set g−1(2) consists of two lines and the
set g−1(2) − W (2) is not connected and the set g−1(B(2, δ)) − W (2) is
connected.
The construction of the vector field used to prove Proposition 3.2 fails

in this case, since at the singular points q1 = [1 : 0 : 1], q2 = [−1 : 0 : 1],
q3 = [0 : 1 : 1], q4 = [0 : −1 : 1] the vector field

u = x2y

x2 − y2 − z2
∂

∂x
+ y2x

y2 − x2 − z2
∂

∂y
+ 2z
xy

∂

∂z

cannot be extended.

The proof of Theorem 2.2

Define the following sets

P (b, V ) = g−1(V ) ∪W (b), R(b) = g−1(Ub)−W (b),

PR(b, V ) = P (b, V )−W (b),

where V is contained in Ub.

Lemma 3.5. — Let V ⊂ Ub be a contractible subset. If there exists a
continuous map ξ : Ub × [0, 1] → Ub such that ξ(y, 0) = y, and the sets
ξ(V × [0, 1]), ξ(Ub × {1}) lie in V . Then the pair (g−1(Ub), g−1(V )) is n-
connected.

Proof. — For each T̃j with j ∈ J(b), we can choose a vector field νj
tangent to the level sets of g and pointing to the interior ofW (b). The vector
field ν on ∂W (b) defined by ν|

T̃j
+ νj allows us to construct a deformation

h : W (b)× [0, 1]→W (b) such that h(y, 0) = y, and the image of h(W (b)×
{1}) = W ′(b) has empty intersection with R(b).
The map h(y, 1− t) gives us a deformation of the pair (g−1(Ub)−W ′(b),

P (b, V ) −W ′(b)) to the pair (R(b), PR(b, V )). By [9, 5.5 Excision II], the
pairs (g−1(Ub), P (b, V )) and (R(b), PR(b, V )) have the same l-connectivity.
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Therefore, Proposition 3.2. implies that the pair (g−1(Ub), P (b, V )) is l-
connected for every l.
Now, consider the pair (Ñ◦j ∩ g−1(Ub), Ñ◦j ∩ g−1(V )) = (Ub,j , Vj) with

j ∈ J(b). Since V is contractible and the restriction of g to Ñj − F̃j is a
trivial fibration, Lemma 3.1 and Property [9, 5.3 Deformation] imply that
the pair (Ub,j , Vj) is l-connected for every l if F̃j ⊂ Vj , and n-connected if
F̃j is not contained in Vj . Therefore the pair (W (b),∪j∈J(b)Vj) is at least
n-connected.

The vector field −ν points toward the interior of R(b). Analogously,
we define a deformation h′ : R(b) × [0, 1] → R(b) such that the closure
of the image h′(R(b) × {1}) = R′(b) has empty intersection with W (b).
Considering the set R′(b)∩g−1(V ) and the tangency of ν to the level sets of
g, [9, 5.5 Excision II] implies that the pair (P (b, V ), g−1(V )) is n-connected.
Since (g−1(Ub), P (b, V )) is l-connected for every l, by [9, 5.2 Transitivity]
the pair (g−1(Ub), g−1(V )) is n-connected. �

Proof of Theorem 2.2. — Take a triangulation ∆ of C by equilateral
triangles with sides of length δ, such that one of the vertices in V∆ is
c ∈ C. Let Hl be the family of concentric hexagons with center c and
vertices in V∆. Label by ci the vertices V∆ such that between ci and ci+1
there always exists an edge ei ∈ E∆ of the triangulation ∆, and c0 = c.
Also, the vertices ci with 6(l−1)l/2 < i 6 6l(l+1)/2 are in the hexagon Hl.

Consider the open sets Ui = BC(ci, δ) and Wi = ∪j6iUj . Since the
intersection Ui ∩Wi−1 = Vi is contractible in Ui, Lemma 3.5 gives that the
pair (g−1(Ui), g−1(Vi)) is n-connected.

TheWi-closures of the sets (Wi−Wi−1) and (Wi−1−Ui) are disjoint, thus
the previous paragraph combined with [9, 5.4 Excision] imply that the pair
(g−1(Wi), g−1(Wi−1)) is n-connected for every i. From [9, 5.2 Transitivity]
we deduce that the pair (g−1(Wi), g−1(W0)) is n-connected for every i.
Taking V = c in Lemma 3.5, we see that (g−1(W0), g−1(c)) is n-connected.
Hence (g−1(Wi), g−1(c)) is n-connected for all i. As any representative ele-
ment of a class in πl(Y, g−1(c)) is contained in some pair (g−1(Wi), g−1(c))
we conclude that the pair (Y, g−1(c)) is n-connected. �
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