Nous définissons une nouvelle compactification de l’outre espace (la compactification de Pacman) qui est un rétract absolu et dont le bord est un -ensemble. À l’inverse, pour tout , la compactification classique , qui consiste en les actions très petites de sur des arbres réels, n’est pas localement -connexe. La compactification de Pacman est un éclatement de , obtenu en attribuant une orientation à tout arc à stabilisateur non trivial dans ces arbres réels.
We define a new compactification of outer space (the Pacman compactification) which is an absolute retract, for which the boundary is a -set. The classical compactification made of very small -actions on -trees, however, fails to be locally -connected as soon as . The Pacman compactification is a blow-up of , obtained by assigning an orientation to every arc with nontrivial stabilizer in the trees.
Révisé le :
Accepté le :
Publié le :
Classification : 20E36
Mots clés : Outre espace, compactification, rétract absolu, -ensemble,
@article{AIF_2019__69_6_2395_0, author = {Bestvina, Mladen and Horbez, Camille}, title = {A compactification of outer space which is an absolute retract}, journal = {Annales de l'Institut Fourier}, pages = {2395--2437}, publisher = {Association des Annales de l'institut Fourier}, volume = {69}, number = {6}, year = {2019}, doi = {10.5802/aif.3298}, language = {en}, url = {https://aif.centre-mersenne.org/item/AIF_2019__69_6_2395_0/} }
Bestvina, Mladen; Horbez, Camille. A compactification of outer space which is an absolute retract. Annales de l'Institut Fourier, Tome 69 (2019) no. 6, pp. 2395-2437. doi : 10.5802/aif.3298. https://aif.centre-mersenne.org/item/AIF_2019__69_6_2395_0/
[1] Coarse flow spaces for relatively hyperbolic groups, Compos. Math., Volume 153 (2017) no. 4, pp. 745-779 | Article | MR 3631229 | Zbl 1366.18012
[2] The Farrell–Jones Conjecture for mapping class groups, Invent. Math., Volume 215 (2019) no. 2, pp. 651-712 | Article | MR 3910072 | Zbl 07023770
[3] The -theoretic Farrell–Jones conjecture for hyperbolic groups, Invent. Math., Volume 172 (2008) no. 1, pp. 29-70 | Article | MR 2385666 | Zbl 1143.19003
[4] Outer limits (1994) (preprint, available at http://andromeda.rutgers.edu/~feighn/papers/outer.pdf)
[5] Boundary amenability of (2017) (https://arxiv.org/abs/1705.07017)
[6] The boundary of negatively curved groups, J. Am. Math. Soc., Volume 4 (1991) no. 3, pp. 469-481 | Article | MR 1096169 | Zbl 0767.20014
[7] Theory of retracts, Monografie Matematyczne, Volume 44, Państwowe Wydawnictwo Naukowe, 1967, 251 pages | MR 216473 | Zbl 0153.52905
[8] Very small group actions on -trees and Dehn twist automorphisms, Topology, Volume 34 (1995) no. 3, pp. 575-617 | Article | MR 1341810 | Zbl 0844.20018
[9] Group actions on -trees, Proc. Lond. Math. Soc., Volume 55 (1987) no. 3, pp. 571-604 | Article | Zbl 0658.20021
[10] Moduli of graphs and automorphisms of free groups, Invent. Math., Volume 84 (1986) no. 1, pp. 91-119 | Article | MR 830040 | Zbl 0589.20022
[11] The boundary of outer space in rank two, Arboreal group theory (Berkeley, CA, 1988) (Mathematical Sciences Research Institute Publications) Volume 19 (1991), pp. 189-230 | Article | MR 1105335 | Zbl 0786.57002
[12] Absolute neighborhood retracts and local connectedness in arbitrary metric spaces, Compos. Math., Volume 13 (1958), pp. 229-246 | MR 113217 | Zbl 0089.38903
[13] Foundations of algebraic topology, Princeton University Press, 1952, xv+328 pages | Article | Zbl 0047.41402
[14] Dimension theory, North-Holland, 1978 | Zbl 0401.54029
[15] The rank of actions on -trees, Ann. Sci. Éc. Norm. Supér., Volume 28 (1995) no. 5, pp. 549-570 | Article | MR 1341661 | Zbl 0835.20038
[16] Approximations of stable actions on -trees, Comment. Math. Helv., Volume 73 (1998) no. 1, pp. 89-121 | Article | MR 1610591 | Zbl 0979.20026
[17] Deformation spaces of trees, Groups Geom. Dyn., Volume 1 (2007) no. 2, pp. 135-181 | Article | MR 2319455 | Zbl 1134.20026
[18] The outer space of a free product, Proc. Lond. Math. Soc., Volume 94 (2007) no. 3, pp. 695-714 | Article | MR 2325317 | Zbl 1168.20011
[19] Measured lamination spaces for surfaces, from the topological viewpoint, Topology Appl., Volume 30 (1988) no. 1, pp. 63-88 | Article | MR 964063 | Zbl 0662.57005
[20] Hyperbolic graphs for free products, and the Gromov boundary of the graph of cyclic splittings, J. Topol., Volume 9 (2016) no. 2, pp. 401-450 | Article | MR 3509969 | Zbl 1361.20029
[21] Spectral rigidity for primitive elements of , J. Group Theory, Volume 19 (2016) no. 1, pp. 55-123 | MR 3441129 | Zbl 1350.20022
[22] The boundary of the outer space of a free product, Isr. J. Math., Volume 221 (2017) no. 1, pp. 179-234 | Article | MR 3705852 | Zbl 1414.20010
[23] Theory of retracts, Wayne State University Press, 1965, 234 pages | Zbl 0145.43003
[24] Subgroups of Teichmüller modular groups, Translations of Mathematical Monographs, Volume 115, American Mathematical Society, 1992, xii+127 pages (Translated from the Russian by E. J. F. Primrose and revised by the author) | MR 1195787
[25] Sur les espaces localement connexes et péaniens en dimension , Fundam. Math., Volume 24 (1935) no. 1, pp. 269-287 | Article | Zbl 0011.04002
[26] Topology. Vol. II, Academic Press; Państwowe Wydawnictwo Naukowe Polish Scientific Publishers, 1968, xiv+608 pages (New edition, revised and augmented. Translated from the French by A. Kirkor)
[27] Graphs of actions on -trees, Comment. Math. Helv., Volume 69 (1994) no. 1, pp. 28-38 | Article | MR 1259604 | Zbl 0802.05044
[28] Geometric group actions on trees, Am. J. Math., Volume 119 (1997) no. 1, pp. 83-102 | Article | MR 1428059 | Zbl 0878.20019
[29] Topologie de Gromov équivariante, structures hyperboliques et arbres réels, Invent. Math., Volume 94 (1988) no. 1, pp. 53-80 | Article | Zbl 0673.57034
[30] The Gromov topology on -trees, Topology Appl., Volume 32 (1989) no. 3, pp. 197-221 | Article | MR 1007101 | Zbl 0675.20033
[31] A construction of pseudo-Anosov homeomorphisms, Trans. Am. Math. Soc., Volume 310 (1988) no. 1, pp. 179-197 | Article | MR 930079 | Zbl 0706.57008
[32] Arbres, amalgames, , Astérisque, Volume 46, Société Mathématique de France, 1977 | Zbl 0302.20039
[33] Decomposition of a group with a single defining relation into a free product, Proc. Am. Math. Soc., Volume 6 (1955), pp. 273-279 | Article | MR 69174 | Zbl 0064.02204
[34] Deformations of length functions in groups (1989) (preprint)
[35] Splittings of surfaces, J. Am. Math. Soc., Volume 9 (1996) no. 2, pp. 605-616 | Article | MR 1339846 | Zbl 0877.57002
[36] Decompositions of free groups, J. Pure Appl. Algebra, Volume 40 (1986) no. 1, pp. 99-102 | Article | MR 825183 | Zbl 0579.20021
[37] On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Am. Math. Soc., Volume 19 (1988) no. 2, pp. 417-431 | Article | MR 956596 | Zbl 0674.57008