We define a new compactification of outer space (the Pacman compactification) which is an absolute retract, for which the boundary is a -set. The classical compactification made of very small -actions on -trees, however, fails to be locally -connected as soon as . The Pacman compactification is a blow-up of , obtained by assigning an orientation to every arc with nontrivial stabilizer in the trees.
Nous définissons une nouvelle compactification de l’outre espace (la compactification de Pacman) qui est un rétract absolu et dont le bord est un -ensemble. À l’inverse, pour tout , la compactification classique , qui consiste en les actions très petites de sur des arbres réels, n’est pas localement -connexe. La compactification de Pacman est un éclatement de , obtenu en attribuant une orientation à tout arc à stabilisateur non trivial dans ces arbres réels.
Revised:
Accepted:
Published online:
Keywords: Outer space, compactification, absolute retract, $Z$-set, $\protect \text{Out}(F_N)$
Mot clés : Outre espace, compactification, rétract absolu, $Z$-ensemble, $\protect \text{Out}(F_N)$
Bestvina, Mladen 1; Horbez, Camille 2
@article{AIF_2019__69_6_2395_0, author = {Bestvina, Mladen and Horbez, Camille}, title = {A compactification of outer space which is an absolute retract}, journal = {Annales de l'Institut Fourier}, pages = {2395--2437}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {69}, number = {6}, year = {2019}, doi = {10.5802/aif.3298}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3298/} }
TY - JOUR AU - Bestvina, Mladen AU - Horbez, Camille TI - A compactification of outer space which is an absolute retract JO - Annales de l'Institut Fourier PY - 2019 SP - 2395 EP - 2437 VL - 69 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3298/ DO - 10.5802/aif.3298 LA - en ID - AIF_2019__69_6_2395_0 ER -
%0 Journal Article %A Bestvina, Mladen %A Horbez, Camille %T A compactification of outer space which is an absolute retract %J Annales de l'Institut Fourier %D 2019 %P 2395-2437 %V 69 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3298/ %R 10.5802/aif.3298 %G en %F AIF_2019__69_6_2395_0
Bestvina, Mladen; Horbez, Camille. A compactification of outer space which is an absolute retract. Annales de l'Institut Fourier, Volume 69 (2019) no. 6, pp. 2395-2437. doi : 10.5802/aif.3298. https://aif.centre-mersenne.org/articles/10.5802/aif.3298/
[1] Coarse flow spaces for relatively hyperbolic groups, Compos. Math., Volume 153 (2017) no. 4, pp. 745-779 | DOI | MR | Zbl
[2] The Farrell–Jones Conjecture for mapping class groups, Invent. Math., Volume 215 (2019) no. 2, pp. 651-712 | DOI | MR | Zbl
[3] The -theoretic Farrell–Jones conjecture for hyperbolic groups, Invent. Math., Volume 172 (2008) no. 1, pp. 29-70 | DOI | MR | Zbl
[4] Outer limits (1994) (preprint, available at http://andromeda.rutgers.edu/~feighn/papers/outer.pdf)
[5] Boundary amenability of (2017) (https://arxiv.org/abs/1705.07017)
[6] The boundary of negatively curved groups, J. Am. Math. Soc., Volume 4 (1991) no. 3, pp. 469-481 | DOI | MR | Zbl
[7] Theory of retracts, Monografie Matematyczne, 44, Państwowe Wydawnictwo Naukowe, 1967, 251 pages | MR | Zbl
[8] Very small group actions on -trees and Dehn twist automorphisms, Topology, Volume 34 (1995) no. 3, pp. 575-617 | DOI | MR | Zbl
[9] Group actions on -trees, Proc. Lond. Math. Soc., Volume 55 (1987) no. 3, pp. 571-604 | DOI | Zbl
[10] Moduli of graphs and automorphisms of free groups, Invent. Math., Volume 84 (1986) no. 1, pp. 91-119 | DOI | MR | Zbl
[11] The boundary of outer space in rank two, Arboreal group theory (Berkeley, CA, 1988) (Mathematical Sciences Research Institute Publications), Volume 19 (1991), pp. 189-230 | DOI | MR | Zbl
[12] Absolute neighborhood retracts and local connectedness in arbitrary metric spaces, Compos. Math., Volume 13 (1958), pp. 229-246 | MR | Zbl
[13] Foundations of algebraic topology, Princeton University Press, 1952, xv+328 pages | DOI | Zbl
[14] Dimension theory, North-Holland, 1978 | Zbl
[15] The rank of actions on -trees, Ann. Sci. Éc. Norm. Supér., Volume 28 (1995) no. 5, pp. 549-570 | DOI | MR | Zbl
[16] Approximations of stable actions on -trees, Comment. Math. Helv., Volume 73 (1998) no. 1, pp. 89-121 | DOI | MR | Zbl
[17] Deformation spaces of trees, Groups Geom. Dyn., Volume 1 (2007) no. 2, pp. 135-181 | DOI | MR | Zbl
[18] The outer space of a free product, Proc. Lond. Math. Soc., Volume 94 (2007) no. 3, pp. 695-714 | DOI | MR | Zbl
[19] Measured lamination spaces for surfaces, from the topological viewpoint, Topology Appl., Volume 30 (1988) no. 1, pp. 63-88 | DOI | MR | Zbl
[20] Hyperbolic graphs for free products, and the Gromov boundary of the graph of cyclic splittings, J. Topol., Volume 9 (2016) no. 2, pp. 401-450 | DOI | MR | Zbl
[21] Spectral rigidity for primitive elements of , J. Group Theory, Volume 19 (2016) no. 1, pp. 55-123 | MR | Zbl
[22] The boundary of the outer space of a free product, Isr. J. Math., Volume 221 (2017) no. 1, pp. 179-234 | DOI | MR | Zbl
[23] Theory of retracts, Wayne State University Press, 1965, 234 pages | Zbl
[24] Subgroups of Teichmüller modular groups, Translations of Mathematical Monographs, 115, American Mathematical Society, 1992, xii+127 pages (Translated from the Russian by E. J. F. Primrose and revised by the author) | MR
[25] Sur les espaces localement connexes et péaniens en dimension , Fundam. Math., Volume 24 (1935) no. 1, pp. 269-287 | DOI | Zbl
[26] Topology. Vol. II, Academic Press; Państwowe Wydawnictwo Naukowe Polish Scientific Publishers, 1968, xiv+608 pages (New edition, revised and augmented. Translated from the French by A. Kirkor)
[27] Graphs of actions on -trees, Comment. Math. Helv., Volume 69 (1994) no. 1, pp. 28-38 | DOI | MR | Zbl
[28] Geometric group actions on trees, Am. J. Math., Volume 119 (1997) no. 1, pp. 83-102 | DOI | MR | Zbl
[29] Topologie de Gromov équivariante, structures hyperboliques et arbres réels, Invent. Math., Volume 94 (1988) no. 1, pp. 53-80 | DOI | Zbl
[30] The Gromov topology on -trees, Topology Appl., Volume 32 (1989) no. 3, pp. 197-221 | DOI | MR | Zbl
[31] A construction of pseudo-Anosov homeomorphisms, Trans. Am. Math. Soc., Volume 310 (1988) no. 1, pp. 179-197 | DOI | MR | Zbl
[32] Arbres, amalgames, , Astérisque, 46, Société Mathématique de France, 1977 | Zbl
[33] Decomposition of a group with a single defining relation into a free product, Proc. Am. Math. Soc., Volume 6 (1955), pp. 273-279 | DOI | MR | Zbl
[34] Deformations of length functions in groups (1989) (preprint)
[35] Splittings of surfaces, J. Am. Math. Soc., Volume 9 (1996) no. 2, pp. 605-616 | DOI | MR | Zbl
[36] Decompositions of free groups, J. Pure Appl. Algebra, Volume 40 (1986) no. 1, pp. 99-102 | DOI | MR | Zbl
[37] On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Am. Math. Soc., Volume 19 (1988) no. 2, pp. 417-431 | DOI | MR | Zbl
Cited by Sources: