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A COMPACTIFICATION OF OUTER SPACE WHICH IS
AN ABSOLUTE RETRACT

by Mladen BESTVINA & Camille HORBEZ (*)

Abstract. — We define a new compactification of outer space CVN (the Pac-
man compactification) which is an absolute retract, for which the boundary is a
Z-set. The classical compactification CVN made of very small FN -actions on R-
trees, however, fails to be locally 4-connected as soon as N > 4. The Pacman
compactification is a blow-up of CVN , obtained by assigning an orientation to
every arc with nontrivial stabilizer in the trees.
Résumé. — Nous définissons une nouvelle compactification de l’outre espace

CVN (la compactification de Pacman) qui est un rétract absolu et dont le bord
est un Z-ensemble. À l’inverse, pour tout N > 4, la compactification classique
CVN , qui consiste en les actions très petites de FN sur des arbres réels, n’est pas
localement 4-connexe. La compactification de Pacman est un éclatement de CVN ,
obtenu en attribuant une orientation à tout arc à stabilisateur non trivial dans ces
arbres réels.

1. Introduction

The study of the group Out(FN ) of outer automorphisms of a finitely
generated free group has greatly benefited from the study of its action on
Culler–Vogtmann’s outer space CVN . It is therefore reasonable to look for
compactifications of CVN that have “nice” topological properties. The goal
of the present paper is to construct a compactification of CVN which is
a compact, contractible, finite-dimensional absolute neighborhood retract
(ANR), for which the boundary is a Z-set.
One motivation for finding “nice” actions of a group G on absolute re-

tracts comes from the problem of solving the Farrell–Jones conjecture for
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G, see [3, Section 1]. For instance, it was proved in [6] that the union of the
Rips complex of a hyperbolic group together with the Gromov boundary is
a compact, contractible ANR, and this turned out to be a crucial ingredi-
ent in the proof by Bartels–Lück–Reich of the Farrell–Jones conjecture for
hyperbolic groups [3]. A similar approach was recently used by Bartels to
extend these results to the context of relatively hyperbolic groups [1], and
by Bartels–Bestvina to the context of mapping class groups [2].
We review some terminology. A compact metrizable space X is said to

be an absolute (neighborhood) retract (AR or ANR) if for every compact
metrizable space Y that contains X as a closed subset, the space X is
a (neighborhood) retract of Y . Given x ∈ X, we say that X is locally
contractible (LC) at x if for every open neighborhood U of x, there exists
an open neighborhood V ⊆ U of x such that the inclusion map V ↪→ U is
nullhomotopic. More generally, X is locally n-connected (LCn) at x if for
every open neighborhood U of x, there exists an open neighborhood V ⊆ U
of x such that for every 0 6 i 6 n, every continuous map f : Si → V from
the i-sphere is nullhomotopic in U . We then say that X is LC (or LCn) if
it is LC (or LCn) at every point x ∈ X.

A nowhere dense closed subset Z of a compact metrizable space X is a
Z-set if X can be instantaneously homotoped off of Z, i.e. if there exists a
homotopyH : X×[0, 1]→ X so thatH(x, 0) = x andH(X×(0, 1]) ⊆ X\Z.
Given z ∈ Z, we say that Z is locally complementarily contractible (LCC)
at z, resp. locally complementarily n-connected (LCCn) at z, if for every
open neighborhood U of z in X, there exists a smaller open neighborhood
V ⊆ U of z in X such that the inclusion V \Z ↪→ U \Z is nullhomotopic in
X, resp. trivial in πi for all 0 6 i 6 n. We then say that Z is LCC (resp.
LCCn) in X if it is LCC (resp. LCCn) at every point z ∈ Z.
Every ANR space is locally contractible. Further, if X is an ANR, and

Z ⊆ X is a Z-set, then Z is LCC in X. Conversely, it is a classical fact that
every finite-dimensional, compact, metrizable, locally contractible space X
is an ANR, and further, an n-dimensional LCn compact metrizable space is
an ANR, see [23, Theorem V.7.1]. IfX is further assumed to be contractible
then X is an AR. In Appendix B of the present paper, we will establish
(by similar methods) a slight generalization of this fact, showing that if X
is an n-dimensional compact metrizable space, and Z ⊆ X is a nowhere
dense closed subset which is LCCn in X, and such that X \Z is LCn, then
X is an ANR and Z is a Z-set in X.
Culler–Vogtmann’s outer space CVN can be defined as the space of all

FN -equivariant homothety classes of free, minimal, simplicial, isometric
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Figure 1.1. The reduced parts of the classical compactification CV2
(on the left), and of the Pacman compactification ĈV2 (on the right).

FN -actions on simplicial metric trees (with no valence 2 vertices). Culler–
Morgan’s compactification of outer space [9] can be described by taking the
closure in the space of all FN -equivariant homothety classes of minimal,
nontrivial FN -actions on R-trees, equipped with the equivariant Gromov–
Hausdorff topology. The closure CVN identifies with the space of homothety
classes of minimal, very small FN -trees [4, 8, 22], i.e. those trees whose arc
stabilizers are cyclic and root-closed (possibly trivial), and whose tripod
stabilizers are trivial. Outer space CVN is contractible and locally con-
tractible [10].
When N = 2, the closure CV2 was completely described by Culler–

Vogtmann in [11]. The closure of reduced outer space (where one does not
allow for separating edges in the quotient graphs) is represented on the
left side of Figure 1.1: points in the circle at infinity represent actions dual
to measured foliations on a once-punctured torus, and there are “spikes”
coming out corresponding to simplicial actions where some edges have non-
trivial stabilizer. These spikes prevent the boundary CV2 \CV2 from being
a Z-set in CV2: these are locally separating subspaces in CV2, and therefore
CV2 is not LCC (it is not even LCC0) at points on these spikes. More sur-
prisingly, while CV2 is an absolute retract (and we believe that so is CV3),
this property fails as soon as N > 4.

Theorem 1.1. — For all N > 4, the space CVN is not locally 4-
connected, hence it is not an AR.

There are however many trees in CVN at which CVN is locally con-
tractible: for example, we prove in Section 2.2 that CVN is locally con-
tractible at any tree with trivial arc stabilizers. The reason why local 4-
connectedness fails in general is the following. When N > 4, there are trees
in CVN that contain both a subtree dual to an arational measured foliation

TOME 69 (2019), FASCICULE 6
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on a nonorientable surface Σ of genus 3 with a single boundary curve c,
and a simplicial edge with nontrivial stabilizer c. We construct such a tree
T0 (see Section 2 for its precise definition), at which CVN fails to be locally
4-connected, due to the combination of the following two phenomena.

• The space X(c) of trees where c fixes a nondegenerate arc locally
separates CVN at T0.

• The subspace of PMF(Σ) made of foliations which are dual to
very small FN -trees contains arbitrarily small embedded 3-spheres
which are not nullhomologous: these arise as PMF(Σ′) for some
orientable subsurface Σ′ ⊆ Σ which is the complement of a Möbius
band in Σ. Notice here that a tree dual to a geodesic curve on Σ
may fail to be very small, in the case where the curve is one-sided
in Σ.

We will find an open neighborhood U of T0 in CVN such that for any
smaller neighborhood V ⊆ U of T0, we can find a 3-sphere S3 in X(c) ∩
V (provided by the second point above) which is not nullhomologous in
X(c) ∩ U , but which can be capped off by balls B4

± in each of the two
complementary components of X(c) ∩ V in V. By gluing these two balls
along their common boundary S3, we obtain a 4-sphere in V, which is
shown not to be nullhomotopic within U by appealing to a Čech homology
argument, presented in Appendix A of the paper.
It would be of interest to have a better understanding of the topology of

the space PMF(Σ) in order to have a precise understanding of the failure
of local connectivity of CVN .

Question. — Is CVN locally 3-connected for every N? Is CV3 locally
contractible?

However, we also build a new compactification ĈVN of CVN (a blow-
up of CVN ) which is an absolute retract, for which the boundary is a
Z-set. The remedy to the bad phenomena described above is to prescribe
orientations in an FN -equivariant way to all arcs with nontrivial stabilizers
in trees in CVN , which has the effect in particular to “open up” CVN at
the problematic spaces X(c). In other words, the characteristic set of any
element g ∈ FN \ {e} in a tree T is given an orientation as soon as it is
not reduced to a point: when g acts as a hyperbolic isometry of T , its axis
comes with a natural orientation, and we also decide to orient the edges
with nontrivial stabilizers. Precise definitions of ĈVN and its topology are
given in Section 3 of the present paper. In rank 2, this operation has the
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effect of “cutting” along the spikes (see Figure 1.1), which leads us to call
this new compactification the Pacman compactification of outer space.

Theorem 1.2. — The space ĈVN is an absolute retract of dimension
3N − 4, and ĈVN \ CVN is a Z-set.

The space ĈVN is again compact, metrizable and finite-dimensional: this
is established in Section 3 of the present paper from the analogous results
for CVN . Also, we show in Section 4 that every point in ĈVN is a limit of
points in CVN . The crucial point for proving Theorem 1.2 is to show that
the boundary ĈVN \ CVN is locally complementarily contractible.

The proof of this last fact is by induction on the rank N , and the strategy
is the following. Given a tree T ∈ ĈVN \CVN , one can first approximate T
by trees that split as graphs of actions over free splittings of FN , and admit
1-Lipschitz FN -equivariant maps to T . Using our induction hypothesis (and
working in the outer space of each of the factors that are elliptic in the
splitting), we prove that subspaces in ĈVN made of trees that split as
graphs of actions over a given free splitting are locally complementarily
contractible at every point in the boundary. We also find a continuous way
of deforming a neighborhood of T into one of these subspaces, so that T is
sent to a nearby tree. This enables us to prove that ĈVN \ CVN is locally
complementarily contractible at T .

Acknowledgments. We would like to thank the anonymous referee for
their numerous suggestions to improve the exposition of the paper.

2. The space CVN is not an AR when N > 4.

2.1. Review: Outer space and Culler–Morgan’s compactification

Outer space and its closure. Let N > 2. Outer space CVN (resp.
unprojectivized outer space cvN ) is the space of FN -equivariant homothety
(resp. isometry) classes of simplicial, free, minimal, isometric FN -actions
on simplicial metric trees, with no valence 2 vertices. Here we recall that
an FN -tree is minimal if it does not contain any proper FN -invariant sub-
tree. Unprojectivized outer space can be embedded into the space of all
FN -equivariant isometry classes of minimal FN -actions on R-trees, which
is equipped with the equivariant Gromov–Hausdorff topology introduced
in [29, 30]. This is the topology for which a basis of open neighborhoods of
a tree T is given by the sets NT (K,X, ε) (where K ⊆ T is a finite set of

TOME 69 (2019), FASCICULE 6



2400 Mladen BESTVINA & Camille HORBEZ

points, X ⊆ FN is a finite subset, and ε > 0), defined in the following way:
an FN -tree T ′ belongs to NT (K,X, ε) if there exists a finite set K ′ ⊆ T ′

and a bijection K → K ′ such that for all x, y ∈ K and all g ∈ X, one
has |dT ′(x′, gy′)− dT (x, gy)| < ε (where x′, y′ are the images of x, y under
the bijection). The closure cvN was identified in [4, 8, 22] with the space
of FN -equivariant isometry classes of minimal, very small actions of FN
on R-trees (an action is called very small if arc stabilizers are cyclic and
root-closed [possibly trivial], and tripod stabilizers are trivial). Note that
we allow for the trivial action of FN on a point in cvN . The compactifica-
tion CVN is the space of homothety classes of nontrivial actions in cvN . In
the present paper, for carrying induction arguments, we will need to allow
for the case where N = 1, in which case cv1 is the collection of all possible
isometry classes of Z-actions on the real line (these are just parameterized
by the translation length of the generator), and cv1 is obtained by adding
the trivial action on a point.

Structure of the trees in cvN : the Levitt decomposition. A split-
ting of FN is a minimal, simplicial FN -tree. A tree T ∈ cvN is said to split
as a graph of actions over a splitting S if there exist

• for each vertex u of S with stabilizer Gu, a Gu-tree Tu such that if
e is an edge of S incident on u, then Ge is elliptic in Tu,

• for each edge e = uv of S, points xe,u ∈ Tu and xe,v ∈ Tv, both
stabilized by Ge,

• for each edge e = uv of S, a segment Ie = [yu, yv] (possibly of
length 0),

where all these data are FN -equivariant, such that T is obtained from the
disjoint union of the trees Tu and the segments Ie by attaching every vertex
xe,u ∈ Tu to the extremity yu of Ie. See e.g. [27], although in the present
paper, we allow some of the segments Ie to have length 0.
By a result of Levitt [27], every tree T ∈ cvN splits uniquely as a graph of

actions in such a way that vertices of the splitting correspond to connected
components of the closure of the set of branch points in T , and edges
correspond to maximal arcs whose interior contains no branch point of
T . This splitting will be refered to as the Levitt decomposition of T . All
vertex actions Gv y Tv of this decomposition have dense Gv-orbits (the
group Gv might be trivial, and the tree Tv might be reduced to a point).
The underlying simplicial tree S of the splitting is very small, and all its
edges e yield segments Ie of positive length in T . Every very small FN -tree
with dense orbits has trivial arc stabilizers, see e.g. [4, Remark 1.9] or [15,
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Proposition I.10]. Therefore, every tree T ∈ cvN has only finitely many
orbits of maximal arcs with nontrivial stabilizer. Moreover, if 1 6= Z < FN
is cyclic the fixed point set Fix(Z) ⊂ T is empty, or a point, or an arc, and
if in addition 1 6= Z ′ < Z then Fix(Z ′) = Fix(Z).

Characteristic sets of elements in a very small FN -tree. The char-
acteristic set CharT (g) of an element g ∈ FN in an FN -tree T is its axis if
g is hyperbolic and its fixed point set if g is elliptic. When T is very small,
the characteristic set of a nontrivial elliptic element is a closed interval
(possibly a point). An important observation for us is that if characteristic
sets of g and h intersect in more than a point in T , then the same is true
in a neighborhood of (the homothety class of) T in CVN .

Morphisms between FN -trees and a semi-flow on CVN . A mor-
phism between two FN -trees T and T ′ is an FN -equivariant map f : T →
T ′, such that every segment I ⊆ T can be subdivided into finitely many
subsegments I1, . . . , Ik, so that for all i ∈ {1, . . . , k}, the map f is an isom-
etry when restricted to Ii. Notice in particular that every morphism is
1-Lipschitz. A morphism f : T → T ′ is optimal if in addition, for every
x ∈ T , there is an open arc I ⊆ T containing x in its interior on which f is
one-to-one. We denote by A the space of isometry classes of all FN -trees,
and by Opt(A) the space of optimal morphisms between trees in A, which
is equipped with the equivariant Gromov–Hausdorff topology, see [18, Sec-
tion 3.2]. The following statement can be found in [18, Section 3], it is based
on work of Skora [34] inspired by an idea of Steiner.

Proposition 2.1 (Skora [34], Guirardel–Levitt [18]). — There exist
continuous maps H : Opt(A) × [0, 1] → A and Φ,Ψ : Opt(A) × [0, 1] →
Opt(A) such that

• for all f ∈ Opt(A) and all t ∈ [0, 1], the tree H(f, t) is the range of
the morphism Φ(f, t) and the source of the morphism Ψ(f, t),

• for all f ∈ Opt(A), we have Φ(f, 0) = id and Ψ(f, 0) = f ,
• for all f ∈ Opt(A), we have Φ(f, 1) = f and Ψ(f, 1) = id, and
• for all f ∈ Opt(A) and all t ∈ [0, 1], we have Ψ(f, t) ◦ Φ(f, t) = f .

source(f)
f //

Φ(f,t) %%

range(f)

H(f, t)
Ψ(f,t)

99
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The proof of Proposition 2.1 goes as follows: given a morphism f : T0 →
T1, one first defines for all t ∈ [0, 1] a minimal FN -tree Tt, as the quo-
tient space T0/∼t, where a ∼t b whenever f(a) = f(b) and τ(a, b) :=
supx∈[a,b] dT1(f(a), f(x)) 6 t. The morphism f factors through optimal
morphisms φt : T0 → Tt and ψt : Tt → T1 which vary continuously with
f . We then let H(f, t) := Tt, Φ(f, t) := φt and Ψ(f, t) := ψt. The path
(H(f, t))t∈[0,1] will be called the canonical folding path directed by f .

We will now make a few observations about the above construction. We
recall that the bounded backtracking (BBT) constant of a morphism f :
T0 → T1, denoted by BBT(f), is defined as the maximal real number such
that for all x, y ∈ T0 and all z ∈ [x, y], we have dT1(f(z), [f(x), f(y)]) 6 C.
We make the following observation.

Lemma 2.2. — For all t ∈ [0, 1], we have BBT(ψt) 6 BBT(f).

Proof. — Let x, y ∈ Tt, and let z ∈ [x, y]. Let x0, y0 be φt-preimages of
x, y in T0. Then φt([x0, y0]) contains [x, y], so we can find a φt-preimage
z0 of z in the segment [x0, y0]. We then have dT1(ψt(z), [ψt(x), ψt(y)]) =
dT1(f(z0), [f(x0), f(y0)]) 6 BBT(f), which shows that BBT(ψt) 6
BBT(f). �

Lemma 2.3. — Assume that f is isometric when restricted to any arc of
T0 with nontrivial stabilizer. Then for every t ∈ [0, 1], the map ψt : Tt → T1
is isometric when restricted to any arc of Tt with nontrivial stabilizer.

Proof. — Let [at, bt] ⊆ Tt be a nondegenerate arc with nontrivial stabi-
lizer 〈g〉. We aim to show that ψt(at) 6= ψt(bt), which is enough to conclude
since ψt is a morphism. By definition of Tt, there exist a, b ∈ T0 satisfying
τ(a, ga) 6 t and τ(b, gb) 6 t, with f(ga) = f(a) and f(gb) = f(b), such
that at = φt(a) and bt = φt(b).
Assume towards a contradiction that ψt(at) = ψt(bt). Then f(a) = f(b).

If g does not fix any nondegenerate arc in T0, then the segment [a, b] is
contained in the union of all gk-translates of [a, ga] and [b, gb], with k

varying over Z. It follows that τ(a, b) 6 max{τ(a, ga), τ(b, gb)} 6 t, and
hence at = bt, a contradiction. Assume now that g fixes a nondegenerate arc
[a′, b′] ⊆ T0, and let a′′ (resp. b′′) be the projection of a (resp. b) to [a′, b′].
Using the fact that f(a) = f(b) and that f is isometric when restricted
to [a′, b′], we have f([a′′, b′′]) ⊆ f([a, a′′]) ∪ f([b, b′′]), and therefore we get
that τ(a, b) = max{supx∈[a,a′′] dT1(f(a), f(x)), supy∈[b,b′′] dT1(f(b), f(y))}.
Since [a, a′′] ⊆ [a, ga] and [b, b′′] ⊆ [b, gb], we then obtain as above that
τ(a, b) 6 t, so again at = bt, a contradiction. �

ANNALES DE L’INSTITUT FOURIER
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Remark 2.4. — Together with [20, Proposition 4.4], which says that arc
stabilizers in the intermediate trees are root-closed if arc stabilizers are
root-closed in T0 and T1, Lemma 2.3 implies that if T0, T1 ∈ cvN , and if
f is isometric when restricted to arcs with nontrivial stabilizer, then all
intermediate trees belong to cvN . It is also known [18, Proposition 3.6]
that if T0, T1 ∈ cvN , then all intermediate trees belong to cvN .

2.2. Local contractibility at trees with trivial arc stabilizers

The goal of the present section is to prove that cvN is locally contractible
at every tree with all arc stabilizers trivial (Proposition 2.9). The follow-
ing lemma provides nice approximations of trees in cvN with trivial arc
stabilizers.

Lemma 2.5 ([22, Theorem 5.3]). — Given a tree T ∈ cvN with all arc
stabilizers trivial, and any open neighborhood U of T in cvN , there exists
a tree U ∈ U ∩ cvN that admits an optimal morphism onto T .

Proof. — It follows from [21, Theorem 3.6] that we can always find a
simplicial tree U ′ ∈ U ∩ cvN that admits an optimal morphism onto T

(optimality is not stated in [21], however it follows from the construction
which essentially relies on the approximation techniques from [16], see also
Proposition 4.7 for an argument).
However, the FN -action on U ′ may a priori not be free (but U ′ has trivial

arc stabilizers because T has trivial arc stabilizers). One way to replace U ′
by a tree in cvN is to replace any vertex v with nontrivial stabilizer Gv by a
freeGv-tree wedged at the point v, and perform this operation equivariantly
and at all nontrivial fixed vertices; however, the natural map U ′ → U will
collapse these trees and will not be a morphism. Instead, we define a tree
U ′ε in the following way (see Figure 2.1).

Let e1, . . . , ek be a choice of representatives of the orbits of edges incident
on v in U ′, made such that for all i 6= j, the turn {ei, ej} is f -legal, i.e. no
initial segment of ei is identified with an initial segment of ej by f : this is
possible because the tree T has trivial arc stabilizers, so two edges in the
same Gv-orbit never get identified by f . For all i ∈ {1, . . . , k}, we denote
by `(ei) the length of the edge ei. Let {a1, . . . , al} be a free basis of Gv.

Let U ′ε be the tree obtained from U ′ by giving length `(e1)− ε to e1, and
blowing up the vertex v to a free Gv-tree, as depicted in Figure 2.1 (where
we have represented the quotient graph U ′ε/FN ). Then there is an optimal

TOME 69 (2019), FASCICULE 6
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e1

e2

ek

ε

ε/2

ε

ε
ε

a1

al

a2

Gv

w

u

U ′
ε/FN U/FN

Figure 2.1. The situation in the proof of Lemma 2.5.

morphism g : U ′ε → U ′, which is an isometry in restriction to each com-
plementary component of the blown-up edges. We need to show that the
composition g ◦f is again optimal. Optimality at any point x distinct from
w (with the notation from the picture) follows from the optimality of g. Op-
timality at w follows from the fact that a1 does not fix any nondegenerate
arc in T . �

Lemma 2.6. — Let f : S → T be an optimal morphism from a tree
S ∈ cvN to a tree T ∈ cvN . Then there is a neighborhood W of T and a
continuous map

ΨS :W → Opt(cvN )
such that for all W ∈ W, the source of ΨS(W ) is a tree S′ ∈ cvN , in
the same (cone on a) simplex as S and varying continuously, the range of
ΨS(W ) is the tree W , and ΨS(W ) is an optimal morphism. In addition,
ΨS(T ) = f .

Proof. — Let v be a vertex of S. Since f is optimal, the point v belongs
to a line l ⊆ S such that the restriction f|l is an isometry (notice however
that we may not assume in general that l is the axis of an element of FN ).
Denote by v1 and v2 the two vertices of S which are adjacent to v on the
line l. We can then find two hyperbolic elements γ1,v, γ2,v ∈ FN whose axes
in T both intersect f(l) but do not intersect each other, and such that the
segment joining AxT (γ1,v) to AxT (γ2,v) contains f(v1), f(v) and f(v2) in
its interior. Let d ∈ R denote the distance from AxT (γ1,v) to f(v).

IfW is sufficiently close to T , the elements γ1,v and γ2,v are hyperbolic in
W and their axes are disjoint and lie at distance at least d from each other.

ANNALES DE L’INSTITUT FOURIER
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We denote by xvW the point at distance d from AxW (γ1,v) on the segment
from AxW (γ1,v) to AxW (γ2,v). Given a choice v1, . . . , vk of representatives
of the orbits of the vertices of S, there is a unique choice of a (new) metric
on S, giving a tree SW , so that the linear extension of gW (defined on
vertices by sending vi to xvi

W , and extending equivariantly) is a morphism
(up to restricting to a smaller neighborhood of T , we can assume that no
edge gets length 0). Using the fact that f|l is an isometry, we get that
this morphism is also optimal: indeed, the segment joining AxT (γ1,v) to
AxT (γ2,v) contains [f(v1), f(v2)]. It follows that when W is close to T the
segment joining AxW (γ1,v) to AxW (γ2,v) overlaps [gW (v1), gW (v2)] in a
segment that contains gW (v) in its interior. In particular, gW sends the two
directions at v determined by l to distinct directions. Thus we set ΨS(W ) =
gW . It is standard that ΨS is continuous, see [17] for example. �
Given T0 ∈ cvN , the following corollary enables us to choose basepoints

continuously in all trees in a neighborhood of T0, with a prescribed choice
on T0. In the statement, we fix a Cayley tree R of FN with respect to a
free basis of FN , and a vertex ∗ ∈ R, and we denote by Map(FN , cvN )
the collection of all FN -equivariant maps from a tree obtained from R by
possibly varying edge lengths, to trees in cvN .

Corollary 2.7.
(1) Let c, c′ ∈ FN be two nontrivial elements that do not belong to the

same cyclic subgroup. Then the function

b : cvN → Map(FN , cvN )

that sends T ∈ cvN to the morphism R → T that sends the base-
point in R to the projection of CharT (c) to CharT (c′) when the two
are disjoint, and to the midpoint of the overlap when they intersect,
is continuous.

(2) Let N > 2, let T0 ∈ ĉvN , let A ⊆ FN be a free factor of FN ,
and let x0 ∈ T0 be a point which is contained in the union of all
characteristic sets of elements of A. There exists a continuous map
b : cvN → Map(FN , cvN ) such that for all T ∈ cvN , the range of
b(T ) is T , and b(T0)(∗) = x0, and b(T )(∗) is contained in the union
of all characteristic sets of elements of A.

Proof. — The first part of the corollary was proved in [17, p. 166]. We
prove (2). From (1), we get a global choice of basepoints b1 contained in
the union of all characteristic sets of elements of A. From Lemma 2.6, we
have a choice of basepoints b′2 defined in a neighborhood W of T0, with
b′2(T0)(∗) = x0. Let a ∈ A be an element whose characteristic set contains
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x0. By projecting b′2 to the characteristic set of a, we get a continuous
choice of basepoints b2 inW, all contained in the union of all characteristic
sets of elements of A. Choose a continuous function φ : cvN → [0, 1] which
is 1 at T0 and is 0 outside a compact subset of W. Then define

b(T )(∗) = (1− φ(T )) b1(T )(∗) + φ(T ) b2(T )(∗). �

Lemma 2.8. — Let T ∈ cvN , let U be an open neighborhood of T in
cvN . Then there exist ε > 0 and an open neighborhood V ⊆ U of T in cvN
such that if U ∈ V is a tree that admits a (1 + ε)-Lipschitz FN -equivariant
map f onto T , and if U ′ ∈ cvN is a tree such that f factors through
(1 + ε)-Lipschitz FN -equivariant maps from U to U ′ and from U ′ to T ,
then U ′ ∈ U .

Proof. — By definition of the equivariant Gromov–Hausdorff topology,
there exist δ ∈ (0, 1) and a finite set {g1, . . . , gk} of elements of FN such
that U contains

U ′ := {T ′∈ cvN |(1−δ)‖gi‖T 6 ‖gi‖T ′ 6 (1+δ)‖gi‖T for all i ∈ {1, . . . , k}}.

Let ε > 0 be such that ε < min{δ, 1
1−δ − 1}, and let δ′ > 0 be such that

δ′ < 1+δ
1+ε − 1 (this exists because ε < δ). Notice in particular that we have

(2.1) 1− δ < 1
1 + ε

and

(2.2) (1 + ε)(1 + δ′) < 1 + δ.

Let V be an open neighborhood of T in cvN contained in

{U ∈ cvN |(1− δ′)‖gi‖T 6 ‖gi‖U 6 (1 + δ′)‖gi‖T for all i ∈ {1, . . . , k}}.

If U ∈ V and U ′ ∈ cvN are trees such that f factors through (1 + ε)-
Lipschitz FN -equivariant maps from U to U ′ and from U ′ to T , then for
all i ∈ {1, . . . , k}, we have

‖gi‖T 6 (1 + ε)‖gi‖U ′ 6 (1 + ε)2‖gi‖U 6 (1 + ε)2(1 + δ′)‖gi‖T .

Using Equations (2.1) and (2.2), this implies that

(1− δ)‖gi‖T 6 ‖gi‖U ′ 6 (1 + δ)‖gi‖T ,

so U ′ ∈ U . �

Proposition 2.9. — The space cvN is locally contractible at every tree
with all arc stabilizers trivial.
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Proof. — Let T ∈ cvN be a tree with all arc stabilizers trivial, and let U
be an open neighborhood of T in cvN . Let ε > 0 and V ⊆ U be a smaller
neighborhood of T , as provided by Lemma 2.8. Let S ∈ V∩cvN be such that
there exists an optimal morphism from S to T (this exists by Lemma 2.5).
Then there exists a smaller neighborhood W ⊆ V of T such that for all
T ′ ∈ W, there is a (1 + ε)-Lipschitz FN -equivariant map from S to the
source S′ of the morphism ΨS(T ′) given by Lemma 2.6. Since morphisms
are 1-Lipschitz, in view of Lemma 2.8, this implies that all trees that belong
to either the straight path from S to S′, or to the canonical folding path
directed by ΨS(T ′), belong to U . As ΨS(T ′) varies continuously with T ′,
this gives a homotopy of W onto S that stays within U . �
A variant of the above argument shows the following statement, which

will be useful in our proof of the fact that CVN is not an AR.

Lemma 2.10. — Let T0 ∈ cvN be a tree with trivial arc stabilizers that
is dual to a measured foliation on a surface Σ with a single boundary
component c. Let Z ⊆ cvN be the set of all trees dual to a measured
foliation on Σ. Then for every open neighborhood V of T0 in cvN , there
exist a smaller neighborhood W ⊆ V of T0 in cvN , a tree S ∈ W ∩ cvN ,
and a continuous map H : (Z ∩W)× [0, 1]→ V such that H(z, 0) = z and
H(z, 1) = S for all z ∈ Z ∩W, and c is hyperbolic in H(z, t) for all z ∈ Z
and all t > 0.

Proof. — The proof of Lemma 2.10 is the same as the proof of Proposi-
tion 2.9, except that we have to show in addition that c remains hyperbolic
until it reaches z along the canonical folding path from S′ to z determined
by the morphism ΨS(z). Notice that c is not contained in any proper free
factor of FN , so whenever c becomes elliptic along a canonical folding path,
the tree T reached by the path contains no simplicial edge with trivial sta-
bilizer. In view of Lemma 2.3, no two simplicial edges with nontrivial stabi-
lizer can get identified by the folding process. In addition, an arc in a subtree
with dense orbits from the Levitt decomposition of T as a graph of actions
cannot get identified with a simplicial edge with nontrivial stabilizer, and
two such arcs cannot either get identified together [21, Lemmas 1.9 and
1.10]. This implies that the canonical folding path (H(ΨS(z), t))t∈[0,1] be-
comes constant once it reaches T . To conclude the proof of Lemma 2.10, it
remains to reparametrize this canonical folding path to ensure that it does
not reach T before t = 1. Notice that ‖c‖H(ΨS(z),t) decreases strictly as t
increases, until it becomes equal to 0, and in addition the tree H(ΨS(z), t)
is the same for all t ∈ [0, 1] such that ‖c‖H(ΨS(z),t) = 0. We can therefore
reparametrize the canonical folding path by the translation length of c: for
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all l 6 ‖c‖H(ΨS(z),0), we let H ′(ΨS(z), ‖c‖H(ΨS(z),0)− l) be the unique tree
T on the folding path for which ‖c‖T = l. To get a continuous map from
(Z ∩W) × [0, 1] to V, we then renormalize the parameter l by dividing it
by ‖c‖H(ΨS(z),0). �

2.3. The space CVN is not locally 4-connected when N > 4.

We will now prove that Culler–Morgan’s compactification CVN of outer
space is not an AR as soon as N > 4.

Theorem 2.11. — For all N > 4, the space CVN is not locally 4-
connected, hence it is not an AR.

Remark 2.12. — It can actually be shown however that the closure CV2
is an absolute retract, and we also believe that CV3 is an absolute retract,
though establishing this fact certainly requires a bit more work than the
arguments from the present paper.

An embedded 3-sphere in PMFvs(Σ). When Σ is a compact surface
of negative Euler characteristic χ(Σ) < 0 we denote by PML(Σ) the space
of projectivized measured geodesic laminations on Σ so that every bound-
ary component has measure 0. The space PML(Σ) is homeomorphic to
the sphere S−3χ(Σ)−b−1 where b is the number of boundary components
(see [37, Theorem 3] or [19, Proposition 1.5]).
We now specialize and let Σ be a nonorientable surface of genus 3 with

one boundary component (so that its Euler characteristic is −2). Thus
PML(Σ) = S4. We mention that Σ admits pseudo-Anosov homeomor-
phisms [31, 37]. We denote by PMLvs(Σ) the subspace of PML(Σ) made
of all laminations that are dual to very small trees (equivalently, all lam-
inations that do not contain any 1-sided compact leaf, see [35]). Let γ
be a simple closed curve on Σ that separates Σ into a Möbius band and
an orientable surface Σ0 (which is a compact surface of genus 1 with two
boundary components). Denote by γ0 the core of the Möbius band, which
is 1-sided and geodesic. Then the space PML(Σ0) = S3 is a subset of
PMLvs(Σ), however γ0 /∈ PMLvs(Σ). The key observation for construct-
ing 4-spheres in CVN showing that CVN is not locally 4-connected will be
the following.

Lemma 2.13. — The subset PML(Σ0) ⊆ PMLvs(Σ) is a 3-sphere
which is a retract of PMLvs(Σ).
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Proof. — The space PML(Σ0) is a topologically embedded 3-dimension-
al sphere in the 4-dimensional sphere PML(Σ), so it separates PML(Σ).
We prove below that both sides of PML(Σ) \ PML(Σ0) contain curves
arising as the core of a Möbius band, for which the dual tree is not very
small. This implies that PML(Σ0) is a retract of PMLvs(Σ).
To prove the assertion first notice that one of the two complementary

components is a cone of PML(Σ0) over γ0. If φ is a pseudo-Anosov home-
omorphism of Σ, then φ(γ0) is the core of a Möbius band, and it belongs
to the other complementary component. �

Definition of the tree T0. We will now define a tree T0 ∈ CVN at
which CVN will fail to be locally 4-connected.
Let N > 4. Let T0 ∈ CVN be the tree defined in the following way (see

Figure 2.2). Let F0 be an arational measured foliation on Σ, obtained as
the attracting foliation of a pseudo-Anosov diffeomorphism f of Σ. Let A
be the fundamental group of Σ, which is free of rank 3, let TA be the very
small A-tree dual to F0, and let xA ∈ TA be the unique point fixed by a
nontrivial element cA corresponding to the boundary curve of Σ.

Let B = FN−2, which we write as a free product B = B′ ∗ 〈cB〉 for some
element cB ∈ B. Let TB ∈ cvN−2 be a tree that splits as a graph of actions
over this free splitting of B, with vertex actions a free and simplicial action
TB′ ∈ cvN−3, and the trivial action of 〈cB〉 on a point, where the edge with
trivial stabilizer from the splitting is given length 0. Let xB be the point
fixed by cB in TB . Notice that xB belongs to the B′-minimal subtree TB′

of TB .
Write FN = A∗cA=cB

B, and let T0 be the very small FN -tree obtained as
a graph of actions over this amalgamated free product, with vertex actions
TA and TB and attaching points xA and xB , where the simplicial edges
with nontrivial stabilizers coming from the splitting are assigned length 1.
We let c := cA = cB ∈ FN .

Finding embedded 4-spheres in a neighborhood of T0. Choose an
element g ∈ FN which is hyperbolic in T0 and whose axis crosses the arc
fixed by c. Let U be an open neighborhood of T0 in CVN consisting of
trees where g is hyperbolic, the characteristic sets of g and c overlap, and
the surface group A is not elliptic. The crucial property satisfied by such a
neighborhood U of T0 is that we have the oriented translation length of c,
namely the continuous function

θ : U → R
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〈c〉

B � TB

A � TA

F0

Figure 2.2. The tree T0 at which CVN fails to be locally 4-connected.

defined by

θ(T ) = εT
‖c‖T
‖g‖T

where εT = 1 (resp. −1) if c is hyperbolic in T and the axes of c and g

give the same (resp. opposite) orientation to the overlap, and εT = 0 if c is
elliptic. We will denote by U+ (resp. U−) the subset of U made of trees such
that θ(T ) > 0 (resp. θ(T ) 6 0). Similarly, given any smaller neighborhood
V ⊆ U of T0, we will let V+ := V ∩ U+ and V− := V ∩ U−.

We denote by cv(A) the space of all very small A-actions on R-trees
(which is also the closure of the outer space associated to A). Let UA be an
open neighborhood of TA in cv(A) such that there exists an element a ∈ A
such that the characteristic sets of cA and a have empty intersection in all
trees in UA. For all UA ∈ UA, we then denote by b(UA) the projection of
CharUA

(a) to CharUA
(cA): this gives us a continuous choice of a basepoint

in every tree UA ∈ UA. Given a tree UA ∈ cv(A) in which cA is hyperbolic,
and t ∈ R, we let b(UA, t) be the unique point on the axis of cA at distance |t|
from b(UA), and such that [b(UA), b(UA, t)] is oriented in the same direction
as the axis of cA if t > 0, and in the opposite direction if t 6 0. We then
let T (UA, t) ∈ cv(A) be the tree which splits as a graph of actions over the
free product FN = A ∗B′, with vertex actions UA and TB′ , and attaching
points b(UA, t) and xB (recall from the above that xB ∈ TB′), where the
simplicial edge from the splitting is assigned length 0. The following lemma
follows from the argument in the proof of [22, Lemma 5.6].

Lemma 2.14. — For every open neighborhood V ⊆ U of T0 in CVN ,
there exists an open neighborhood VA ⊆ UA of TA in cv(A) such that for
all UA ∈ VA such that cA is hyperbolic in UA, we have T (UA, 1) ∈ V+, and
T (UA,−1) ∈ V−.
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Denote by X(c) the subspace of CVN made of all trees where c is elliptic,
and by X(c)∗ the subset of X(c) consisting of trees where the surface group
A is not elliptic. Notice that our choice of neighborhood U of T0 ensures
that U ∩X(c) ⊆ X(c)∗. For any tree T in X(c)∗, the minimal A-invariant
subtree is dual to some measured foliation on Σ [35], so we have a map
ψ : X(c)∗ → PMLvs(Σ).

Proposition 2.15. — For every open neighborhood V ⊆ U of T0, there
exists a topologically embedded 3-sphere S3 in X(c)∩V which is a retract
of X(c)∩U , and such that the inclusion map ι : S3 ↪→ X(c)∩V extends to
continuous maps ι± : B4

± → V± (where B4
± are 4-balls with boundary S3),

with ι±(B4
± \ S3) ⊆ CVN \X(c).

Proof. — We identify PML(Σ) with a continuous lift in ML(Σ). This
gives a continuous injective map φ : PMLvs(Σ) → X(c)∗, mapping every
measured foliation F to the tree in CVN that splits as a graph of actions
over FN = A ∗〈c〉 B, with vertex actions the tree dual to F , and the fixed
action B y TB , where the attaching points are the unique points fixed
by c, and the simplicial edge from the splitting is assigned length 1. The
composition ψφ is the identity. Let Σ0 ⊂ Σ be an oriented subsurface as in
Lemma 2.13. We can assume that the 3-sphere φ(PML(Σ0)) is contained in
V: to achieve this, use uniform north-south dynamics of the pseudo-Anosov
homeomorphism f on PML(Σ) to find k ∈ Z so that φ(PML(fk(Σ0))) ⊆
X(c) ∩ V (see [24, Theorem 3.5], which is stated there in the case of an
orientable surface, but the similar statement for a nonorientable surface
follows by considering the orientable double cover of Σ). Using Lemma 2.13,
we get that the 3-sphere φ(PML(Σ0)) is a retract of X(c)∩U (notice also
that its image in cv(A) is again an embbeded 3-sphere which we denote
by S3

A).
Let now VA be an open neighborhood of TA in cv(A) provided by Lem-

ma 2.14, and let WA ⊆ VA be a smaller neighborhood of TA provided
by Lemma 2.10. We can assume that the sphere constructed in the above
paragraph is such that S3

A ⊆ WA. By Lemma 2.10, there exists a tree
VA ∈ VA ∩ cv(A) and a homotopy HA : S3

A × [0, 1]→ VA such that

• for all z ∈ S3
A, we have HA(z, 0) = z, and HA(z, 1) = VA, and

• for all z ∈ S3
A and all t > 0, the element c is hyperbolic in HA(z, t).

We now define H± : S3 × [0, 1] → V± by letting H±(z, 0) = z for all
z ∈ S3, and H±(z, t) = T (HA(z, t),±1) for all z ∈ S3 and all t > 0.
Continuity follows from the argument from [22, Lemma 5.6]. This enables
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X(c) ∩ U

f(S3)

f(B4
+)

f(B4
−)

S4 B4
+

B4
−

CVN

f̃
S3

h̃−1(0)

Figure 2.3. Constructing the sphere S4 showing failure of local 4-
connectivity of CVN .

us to construct the maps ι±, where the segment joining a point z ∈ S3 to
the center of B4

±, is mapped to H±(z, [0, 1]). �
Our proof of Theorem 2.11 uses a Čech homology argument, given in

Appendix A of the paper.
Proof of Theorem 2.11. — We will show that for every neighborhood

V ⊂ U of T0 there is a map S4 → V which is not nullhomotopic in U . This
is illustrated in Figure 2.3. Let S3 be a topologically embedded 3-sphere
in X(c)∩V provided by Proposition 2.15. In particular, the inclusion map
ι : S3 ↪→ X(c) ∩ U is nontrivial in homology (either singular homology,
or Čech homology Ȟ3 with Z/2 coefficients). In addition, we can extend
ι to maps ι± : B4

± → V±, with ι±(B4
± \ S3) ⊆ CVN \ X(c). Gluing these

two along the boundary produces a map f : S4 → V, which restricts to ι
on S3, and such that the composition h = θf : S4 → R (where we recall
that θ is the oriented translation length of c) is standard (i.e. h−1(0) = S3,
h−1([0,+∞)) = B4

+ and h−1((−∞, 0]) = B4
−).

Now suppose that f extends to f̃ : B5 → U , and let h̃ = θf̃ : B5 → R.
If h̃−1(0) were a manifold with boundary S3, then we would immediately
deduce that the inclusion

S3 ↪→ h̃−1(0)
is trivial in singular homology H3. This may fail to be true, but we can
still apply Lemma A.1 to deduce that the above inclusion is trivial in
Čech homology Ȟ3 with Z/2 coefficients. Applying f̃ and observing that
f̃(h̃−1(0)) ⊆ X(c) ∩ U we deduce that

f|S3 = ι : S3 → X(c) ∩ U

is trivial in Ȟ3, a contradiction. �
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3. The Pacman compactification of outer space

In the present paper, we will be interested in another compactification
ĈVN of outer space, which we call the Pacman compactification. We also
define ĉvN as the unprojectivized version of ĈVN . We will now define ĈVN
and establish some basic topological properties.
A point in ĈVN is given by a (homothety class of a) tree T ∈ CVN ,

together with an FN -equivariant choice of orientation of the characteristic
set of every nontrivial element of FN that fixes a nondegenerate arc in T
(notice that every element g ∈ FN which is hyperbolic in T determines a
natural orientation on its axis, which is isometric to a real line, and the
element g−1 determines the opposite orientation on this line). Precisely,
given any nontrivial element c ∈ FN which is not a proper power, and whose
characteristic set in T is a nondegenerate arc CharT (c) := [x, y] fixed by c,
we prescribe an orientation of CharT (c), and the orientation of CharT (c−1)
is required to be opposite to the orientation of CharT (c). The FN -translates
of [x, y] get the induced orientation as required by FN -equivariance. Notice
that there is an FN -equivariant surjective map π : ĈVN → CVN , which
consists in forgetting the orientations of the edges with nontrivial stabilizer.
Given two oriented (possibly finite or infinite) geodesics l and l′ in an R-

tree T with nondegenerate intersection, we define the relative orientation
of l and l′ as being equal to +1 if the orientations of l and l′ agree on
their intersection, and −1 otherwise. Given T ∈ ĈVN , and two elements
α, β ∈ FN whose characteristic sets have nondegenerate intersection in T ,
we define the relative orientation of the pair (α, β) in T as being equal to
the relative orientation of their characteristic sets.
We now define a topology on ĈVN . Given an open set U ⊆ CVN , and a

finite (possibly empty) collection of pairs (α1, β1), . . . , (αk, βk) of elements
of FN , such that for all i ∈ {1, . . . , k}, βi is hyperbolic and the characteristic
sets of αi and βi have nondegenerate intersection in all trees in U , we let

U((α1, β1), . . . , (αk, βk))

be the set of all T ∈ ĈVN such that π(T ) ∈ U , and the relative orientation
of (αi, βi) in T is equal to +1 for all i ∈ {1, . . . , k}. Notice that given two
open sets U,U ′ ⊆ CVN , and finite collections of elements αi, βi, α′j , β′j ∈
FN , the intersection U((α1, β1), . . . , (αk, βk)) ∩ U ′((α′1, β′1), . . . , (α′l, β′l)) is
equal to (U ∩ U ′)((α1, β1), . . . , (αk, βk), (α′1, β′1), . . . , (α′l, β′l)). This shows
the following lemma.

Lemma 3.1. — The sets U((α1, β1), . . . , (αk, βk)) form a basis of open
sets for a topology on ĈVN .
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From now on, we will equip ĈVN with the topology generated by these
sets. Since trees in CVN have trivial arc stabilizers, there is an inclusion
map ι : CVN ↪→ ĈVN .

Lemma 3.2. — The map ι : CVN ↪→ ĈVN is a topological embedding.

Proof. — It follows from the definition of the Gromov–Hausdorff topol-
ogy that if T ∈ CVN , and if (α1, β1), . . . , (αk, βk) is a finite set of pairs
of elements of FN such that for all i ∈ {1, . . . , k}, the axes of αi and βi
in T have nondegenerate intersection, and their orientations agree on their
intersection, then the same remains true in a neighborhood of T . Therefore,
the topology on ĈVN restricts to the Gromov–Hausdorff topology on CVN ,
which shows that ι is a topological embedding. �
For every tree T ∈ CVN , there are only finitely many conjugacy classes

of elements of FN that fix a nondegenerate arc in T . Therefore, the map
π : ĈVN → CVN has finite fibers. The map π is continuous for the above
topology on ĈVN because the π-preimage of any open set U ⊆ CVN is the
open set U(∅) in ĈVN .

Proposition 3.3. — The space ĈVN is second countable.

Proof. — Since CVN is second countable, we can choose a countable basis
(Ui)i∈N of open sets of CVN . Then the countable collection of all sets of the
form Ui((α1, β1), . . . , (αk, βk)) (where for all j ∈ {1, . . . , k}, the element βj
is hyperbolic and the characteristic sets of αj and βj have nondegenerate
intersection in all trees in Ui) is a basis of open sets of ĈVN . �

Proposition 3.4. — The space ĈVN is Hausdorff.

Proof. — Let T 6= T ′ ∈ ĈVN . If π(T ) 6= π(T ′), then since CVN is Haus-
dorff, we can find disjoint open neighborhoods U of π(T ) and U ′ of π(T ′)
in CVN , and these yield disjoint open neighborhoods of T and T ′ in ĈVN .
So we can assume that π(T ) = π(T ′), and there is an arc e with nontrivial
stabilizer 〈c〉 in π(T ) whose orientation is not the same in T and T ′. Let
h ∈ FN be an element which is hyperbolic in π(T ), whose axis contains
the edge e. One can then find an open neighborhood U of π(T ) in CVN
such that for all trees Y ∈ U , the element h is hyperbolic in Y , and the
characteristic sets of h and c have nondegenerate intersection in Y . Then
exactly one of the points T, T ′ ∈ ĈVN belongs to U(c, h), the other be-
longs to U(c, h−1), and U(c, h) ∩ U(c, h−1) = ∅. This shows that ĈVN is
Hausdorff. �
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CharT (α)

β

β′

ββ′

I

I ′

Figure 3.1. Typical position of the characteristic set of α and the axes
of β, β′ and ββ′ in the proof of Lemma 3.5.

The following lemma gives a useful criterion for checking that a sequence
converges in ĈVN .

Lemma 3.5. — Let (Tn)n∈N ∈ ĈVN
N
, and let T ∈ ĈVN . Assume that

(π(Tn))n∈N converges to π(T ) in CVN , and that for every element α ∈ FN
fixing a nondegenerate arc in T , there exists a hyperbolic element β whose
axis in T has nondegenerate intersection with CharT (α), such that the
relative orientations of (α, β) eventually agree in Tn and in T . Then (Tn)n∈N
converges to T .

Proof. — As (π(Tn))n∈N converges to π(T ), it is enough to prove that
given any two elements α, β′ ∈ FN whose characteristic sets in T have non-
degenerate intersection, with β′ hyperbolic in T , the relative orientations
of (α, β′) eventually agree in Tn and in T .

This is clearly true if α is also hyperbolic in T , so we assume that α fixes
a nondegenerate arc in T . By hypothesis, there exists β ∈ FN whose axis
in T has nondegenerate intersection with CharT (α), such that the relative
orientation of (α, β) is equal to 1 both in T and in Tn for n sufficiently
large.
Since β and β′ are hyperbolic in T , they are also both hyperbolic in

all trees Tn with n ∈ N large enough. A typical situation is depicted in
Figure 3.1. Up to replacing β and β′ by their inverses, we can assume that
ββ′ is hyperbolic in T , and that the characteristic sets of α, β and ββ′ in T
contain a common nondegenerate segment I, and likewise the characteristic
sets of α, β′ and ββ′ contain a common nondegenerate segment I ′. This also
holds in Tn for all sufficiently large n ∈ N (in particular ββ′ is hyperbolic
in Tn for all sufficiently large n ∈ N). Since β and ββ′ are both hyperbolic,
their relative orientation eventually agrees in Tn and in T . By hypothesis,
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so does the relative orientation of (α, β). The existence of the segment I
thus ensures that the relative orientation of (α, ββ′) eventually agrees in Tn
and in T . Since β′ and ββ′ are both hyperbolic, their relative orientation
eventually agrees in Tn and in T . The existence of the segment I ′ thus
ensures that the relative orientation of (α, β′) eventually agrees in Tn and
in T , as required. �

Proposition 3.6. — The space ĈVN is compact.

Proof. — Since ĈVN is second countable, it is enough to prove sequential
compactness. Let (Tn)n∈N ∈ ĈVN

N
. Since CVN is compact [9, Theorem 4.5],

up to passing to a subsequence, we can assume that (π(Tn))n∈N converges
to a tree T ∈ CVN .
Let α ∈ FN be an element that fixes a nondegenerate arc in T , and let β ∈

FN be a hyperbolic element in T , whose axis has nondegenerate intersection
with CharT (α). Then up to passing to a subsequence, we can assume that
the relative orientation of (α, β) in Tn is eventually constant, and assign
the corresponding orientation to CharT (α). If we do this equivariantly for
each of the finitely many orbits of maximal arcs with nontrivial stabilizer
in T , Lemma 3.5 ensures that we have found a subsequence of (Tn)n∈N that
converges to T . �

Being compact, Hausdorff, and second countable, the space ĈVN is
metrizable.

Corollary 3.7. — The space ĈVN is metrizable.

Proposition 3.8. — The space ĈVN has finite topological dimension
equal to 3N − 4.

Proof. — The map π : ĈVN → CVN is a continuous map between
compact metrizable spaces, with finite point preimages. It follows from
Hurewicz’s theorem (see [14, Theorem 4.3.6]) that dim(ĈVN ) 6 dim(CVN ).
In addition, the space ĈVN contains CVN as a topologically embedded sub-
space (Lemma 3.2). As dim(CVN ) = dim(CVN ) = 3N − 4 (see [4, 15]), the
result follows. �

Corollary 4.3 below will show in addition that CVN is dense in ĈVN , so
ĈVN is a compactification of CVN . The Out(FN )-action clearly extends to
a continuous action on this compactification.
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4. The space ĈVN is an AR, and the boundary is a Z-set.

The goal of the present section is to prove Theorem 1.2 from the intro-
duction.

4.1. General strategy

We first explain the general strategy of our proof. Let X be a topological
space, let Z ⊂ X be a closed subspace, and let z ∈ Z. We say that (X,Z) is
locally complementarily contractible (LCC) at z if for every neighborhood
U of z in X there is a smaller neighborhood V of z in X such that the
inclusion V r Z ↪→ U r Z is nullhomotopic. If this is true for every z ∈ Z
we say that (X,Z) is LCC.

Remark 4.1. — Notice that if (X,Z) is LCC, then X r Z is dense in
X, as otherwise we would be able to find a point z ∈ Z and an open
neighborhood V of z in X such that V r Z = ∅, and the map ∅ → ∅ is not
nullhomotopic by convention.

To detect that ĈVN is an AR we will use the criterion in the appendix,
Theorem B.1. We will apply it with X = ĈVN and Z = X r CVN . We
are thus reduced to proving that (X,Z) is LCC at every T0 ∈ Z. We will
actually work in the unprojectivized version ĉvN and prove the following
statement.

Theorem 4.2. — For all N > 1, the pair (ĉvN , ĉvN r cvN ) is LCC.

In view of Remark 4.1, we deduce the following result.

Corollary 4.3. — For all N > 1, every point in ĉvN is a limit of points
in cvN .

Proof of Theorem 1.2 from Theorem 4.2. — Since CVN is contractible
and locally contractible, and since ĈVN is compact, metrizable and finite-
dimensional, in view of Theorem B.1, it is enough to show that (ĈVN ,
ĈVN r CVN ) is LCC.
Denote by ∗ the trivial tree in ĉvN . We claim that there exists a con-

tinuous lift φ : ĈVN → ĉvN of the projection map ψ : ĉvN r {∗} → ĈVN .
Indeed, by [32, I.6.5, Corollaire 2], there exists a finite set {g1, . . . , gk} of
elements of FN such that for every nontrivial tree T ∈ ĉvN , there exists
i ∈ {1, . . . , k} with ‖gi‖T > 0. The lift φ is then defined by sending a point
[T ] ∈ ĈVN to the unique representative for which

∑k
i=1 ‖gi‖T = 1.
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Let [T ] ∈ ĈVN , and let T be a lift to ĉvN . Let U[T ] be a neighborhood
of [T ] in ĈVN , and let UT be the full preimage of U[T ] in ĉvN , which is a
neighborhood of T in ĉvN . Since (ĉvN , ĉvN rcvN ) is LCC at T , there exists
a neighborhood VT ⊆ UT of T in ĉvN such that the inclusion VT ∩ cvn ⊆
UT ∩cvN is nullhomotopic; we denote by H : (VT ∩cvN )× [0, 1]→ UT ∩cvN
a homotopy from VT ∩ cvN to a point. Let V[T ] be a neighborhood of [T ] in
ĈVN such that φ(V[T ]) ⊆ VT . Then ψ◦H ◦φ is a homotopy from V[T ]∩CVN
to a point that stays inside U[T ]∩CVN . This shows that (ĈVN , ĈVNrCVN )
is LCC, as claimed. �

We now explain our proof of Theorem 4.2; Theorem 4.4 below summa-
rizes the strategy. In order to state it, we extend the notion of morphisms
to ĉvN as follows: a morphism between two trees T, T ′ ∈ ĉvN is a mor-
phism between π(T ) and π(T ′) which is further assumed to be isometric
and orientation-preserving when restricted to every edge with nontrivial
stabilizer.

Theorem 4.4. — Let T0 ∈ ĉvN be a nontrivial tree and let U be a
neighborhood of T0. Then there is a tree U ∈ U and an optimal morphism
f : U → T0 such that

(1) U splits as a graph of actions over a 1-edge free splitting S of FN .

Further, there is a subset XS,U ⊆ ĉvN that contains U , a continuous map
ρ : ĉvN → XS,U , and a homotopy H : ĉvN × [0, 1] → ĉvN between the
identity and ρ such that

(2) ρ(T0) = U ,
(3) H({T0} × [0, 1]) ⊆ U ,
(4) H(cvN × [0, 1]) ⊆ cvN , and
(5) Assume that the pair (ĉvk, ĉvk r cvk) is LCC for all k < N . If

U 6∈ cvN then (XS,U , XS,U r cvN ) is LCC at U .

The fact that every tree in ĉvN can be approximated by trees that split
as graphs of actions over free splittings (Property (1)) will be explained in
Section 4.3; it relies on classical approximation arguments, using the Rips
machine. The construction of XS,U and of the maps ρ and H will be carried
out in Section 4.4. Roughly speaking, the set XS,U will consist of trees that
split as a graph of actions over the one-edge free splitting S, but the details
of the definition will depend on U . To prove Property (5), we will take
advantage of this splitting, which will allow for an inductive argument.
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Proof of Theorem 4.2 assuming Theorem 4.4. — The proof is by in-
duction on N . The statement is obvious when N = 1, so we assume that
N > 2.

First, we observe that the pair (ĉvN , ĉvNrcvN ) is LCC at the trivial tree
∗. Indeed, by [32, I.6.5, Corollary 2], we can find a finite set {γ1, . . . , γk}
of elements of FN such that for every nontrivial tree T ∈ ĉvN , there exists
i ∈ {1, . . . , k} such that ‖γi‖T > 0. Then any open set U that contains ∗
contains an open set of the form

V =
{
T ∈ ĉvN

∣∣∣∣∣
k∑
i=1
‖γi‖T < ε

}

for some ε > 0. By scaling, V ∩ cvN deformation retracts to the slice

{
T ∈ cvN

∣∣∣∣∣
k∑
i=1
‖γi‖T = ε/2

}

which is homeomorphic to CVN and hence contractible. This shows that
V ∩ cvN ↪→ U ∩ cvN is nullhomotopic.

Let now T0 ∈ ĉvN be a nontrivial tree and let U be a neighborhood
of T0. Let U,XS,U , ρ,H be as in Theorem 4.4. There are now two cases,
depending whether U belongs to cvN or to the boundary.
If U ∈ cvN , choose a contractible neighborhoodW of U in cvN∩U . By the

continuity of ρ and H and Properties (2) and (3), there is a neighborhood
V ⊂ U of T0 such that H(V × [0, 1]) ⊆ U and ρ(V) ⊆ W. By Property (4),
we have H((V ∩ cvN )× [0, 1]) ⊆ U ∩ cvN , so H homotopes V ∩ cvN into W,
staying within U ∩ cvN . As W is contractible, this shows that the inclusion
V ∩ cvN ↪→ U ∩ cvN is nullhomotopic.

Now suppose U 6∈ cvN . By induction we may assume that the pair
(ĉvk, ĉvk r cvk) is LCC for all k < N . Therefore by Property (5), there is a
neighborhood W ⊂ U ∩XS,U of U in XS,U such that W ∩ cvN ↪→ U ∩ cvN
is nullhomotopic. By continuity of ρ and H, there is a neighborhood V of
T0 such that H(V × [0, 1]) ⊆ U and ρ(V) ⊆ W, and by Property (4) we
have H((V ∩ cvN )× [0, 1]) ⊆ U ∩ cvN . Therefore H homotopes V ∩ cvN into
W∩cvN , staying within U ∩cvN . AsW∩cvN ↪→ U ∩cvN is nullhomotopic,
we deduce that the inclusion V ∩ cvN ↪→ U ∩ cvN is nullhomotopic. �
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4.2. Morphisms between trees in ĉvN and extension of the
semi-flow

We recall from the previous section that a morphism between two trees
T, T ′ ∈ ĉvN is a morphism between π(T ) and π(T ′) which is further as-
sumed to be isometric and orientation-preserving when restricted to every
edge with nontrivial stabilizer. A morphism between two trees T, T ′ ∈ ĉvN
is optimal if the corresponding morphism from π(T ) to π(T ′) is optimal.
The space Mor(ĉvN ) of all morphisms between trees in ĉvN is topolo-
gized by saying that two morphisms are close whenever the correspond-
ing morphisms between the projections of the trees in cvN are close, and
in addition the sources and ranges of the morphisms are close in ĉvN . As
before, this space is second-countable. We note that the canonical map
Mor(ĉvN ) → Mor(cvN ) is bounded-to-one, and it is injective when re-
stricted to morphisms between two fixed elements of ĉvN . We denote by
Opt(ĉvN ) the space of all optimal morphisms between trees in ĉvN . We
now extend Proposition 2.1 to morphisms between trees in ĉvN .

Proposition 4.5. — There exist continuous maps Ĥ : Opt(ĉvN ) ×
[0, 1]→ ĉvN and Φ̂, Ψ̂ : Opt(ĉvN )× [0, 1]→ Opt(ĉvN ) such that

• for all f ∈ Opt(ĉvN ) and all t ∈ [0, 1], the tree Ĥ(f, t) is the range
of the morphism Φ̂(f, t) and the source of the morphism Ψ̂(f, t),

• for all f ∈ Opt(ĉvN ), we have Φ̂(f, 0) = id and Ψ̂(f, 0) = f ,
• for all f ∈ Opt(ĉvN ), we have Φ̂(f, 1) = f and Ψ̂(f, 1) = id, and
• for all f ∈ Opt(ĉvN ) and all t ∈ [0, 1], we have Ψ̂(f, t) ◦ Φ̂(f, t) = f .

Proof. — Let f ∈ Opt(ĉvN ) be a morphism with source S and range T .
By Proposition 2.1, the corresponding morphism from π(S) to π(T ) factors
through trees H(f, t). Notice that any morphism satisfies the hypothesis
from Lemma 2.3, i.e. f is isometric when restricted to any arc of π(T )
with trivial stabilizer. By Lemma 2.3, the induced morphism from H(f, t)
to π(T ) is isometric when restricted to any arc of H(f, t) with nontrivial
stabilizer. This enables us to define Ĥ(f, t) for all (f, t) ∈ Opt(ĉvN )× [0, 1],
by pulling back the orientations on the edges of T in all trees H(f, t). We
also get morphisms Φ̂(f, t) and Ψ̂(f, t). We will check that the map Ĥ

defined in this way is continuous, from which it follows that Φ̂ and Ψ̂ are
also continuous. Since Opt(ĉvN ) is second-countable, it is enough to show
sequential continuity.
Let (f, t) ∈ Opt(ĉvN )× [0, 1], and let ((fn, tn))n∈N ∈ (Opt(ĉvN )× [0, 1])N

be a sequence that converges to (f, t). By Proposition 2.1, the sequence
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e

Ax(β)

H(f, t)

I

u v

v′

u′

T

Ψ(f, t)(u′)

Ψ(f, t)(u) Ψ(f, t)(v)

Ψ(f, t)(v′)
Ax(β)

Ψ(f, t)

Figure 4.1. The situation in the proof of Proposition 4.5.

(π(Ĥ(fn, tn)))n∈N converges to π(Ĥ(f, t)). Let α ∈ FN be an element that
fixes a nondegenerate arc e = [u, v] in Ĥ(f, t). We denote by l(e) the
length of e. Then α also fixes a nondegenerate arc in the range T of f . Let
C := BBT(f) be the bounded backtracking constant of f (whose definition
is recalled in the paragraph preceding Lemma 2.2). Recall from Lemma 2.2
that BBT(Ψ(f, t)) 6 BBT(f) for all t ∈ [0, 1].
We observe that there exists a legal segment I of length larger than

2 BBT(f) + l(e), centered at the midpoint of e. Indeed, every segment con-
tained in one of the subtrees with dense orbits of the Levitt decomposition
is legal (see e.g. [5, Lemma 2.2]), and since Ψ(f, t) is optimal, every legal
segment ending at a vertex of π(Ĥ(f, t)) can be enlarged to a longer legal
segment. We can then find an element β ∈ FN which is hyperbolic in Ĥ(f, t)
and whose axis contains I (this is obtained by multiplying two hyperbolic
elements whose axes are disjoint, and such that the bridge between their
axes contains I). This is illustrated in Figure 4.1.
We claim that β is hyperbolic in T , that its axis crosses the image of e,

and that the relative orientations of (α, β) are the same in Ĥ(f, t) and in
T . To prove this, we first observe that there is no point u′ on the axis of β
in H(f, t) which has the same image as u in T : otherwise, our choice of I
would imply that the image of [u, u′] in T contains a point at distance larger
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than BBT(f) from Ψ(f, t)(u) = Ψ(f, t)(u′), contradicting the definition of
the BBT. Similarly, there is no point v′ on the axis of β in H(f, t) which
has the same image as v in T . In particular, if u′ and v′ are two points
lying on the axis of β in H(f, t), sufficiently far from u and v, and such
that u′, u, v, v′ are aligned in this order in H(f, t), then their images in T
are also aligned in this order. Using this observation, we can thus find three
points of the form u, βu and β2u lying on the axis of β in H(f, t), whose
images in T are still aligned in this order. This implies that β is hyperbolic
in T , and that the axis of β in T crosses the image of e, and the relative
orientations of (α, β) in Ĥ(f, t) and in T are the same, as claimed.
For all n ∈ N, let Tn be the range of the morphism fn. Since (Tn)n∈N

converges to T in ĉvN , the relative orientations of (α, β) in Tn and in T

eventually agree. Since the characteristic sets of α and β have nondegener-
ate overlap in all trees Ĥ(f, t′) with t′ > t, a compactness argument shows
that for n ∈ N large enough, the characteristic sets of α and β have nonde-
generate overlap in all trees Ĥ(fn, t′) with t′ > tn. Therefore, the relative
orientation of (α, β) cannot change along the path from Ĥ(fn, tn) to Tn,
so it is the same in Ĥ(fn, tn) and in Tn. This implies that the relative ori-
entations of (α, β) eventually agree in Ĥ(fn, tn) and in Ĥ(f, t). Lemma 3.5
then shows that Ĥ(fn, tn) converges to Ĥ(f, t). �

4.3. Approximations by trees that split over free splittings

The following lemma is a version of Lemma 2.8 for ĉvN , which easily
follows from the version in cvN .

Lemma 4.6. — Let T ∈ ĉvN , and let U be an open neighborhood of T
in ĉvN . Then there exists an open neighborhood W ⊆ U of T in ĉvN such
that if U ∈ W is a tree that admits a morphism f onto T , and if U ′ ∈ ĉvN
is a tree such that f factors through morphisms from U to U ′ and from U ′

to T , then U ′ ∈ U .

A one-edge free splitting of FN is the Bass–Serre tree of a graph of groups
decomposition of FN , either as a free product FN = A ∗ B, or as an HNN
extension FN = A∗. If T ∈ ĉvN is a tree that splits as a graph of actions
over a splitting S of FN , we say that an attaching point of a vertex action
Tv is admissible if either it belongs to the Gv-minimal subtree of Tv, or
else it is an endpoint of an arc with nontrivial stabilizer contained in Gv.
The following proposition extends the analogous result for cvN (see [21,
Theorems 3.6 and 3.11]).
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Proposition 4.7. — Let T ∈ ĉvN , and let U be an open neighborhood
of T . Then there exists a tree U ∈ U that splits as a graph of actions over
a one-edge free splitting S of FN with admissible attaching points, coming
with an optimal morphism f : U → T such that

• every arc with nontrivial stabilizer in T is the f -image of an arc
with nontrivial stabilizer in U ,

• the f -preimage of any arc with nontrivial stabilizer in T consists of
a single arc with nontrivial stabilizer in U ,

• f is an isometry when restricted to the minimal subtree of any
vertex action.

Proof. — The proof of Proposition 4.7 builds on classical approximation
techniques of very small FN -trees, we present a sketch of the argument.
Let X be the underlying graph of groups of the Levitt decomposition of T .
We can assume that all edge stabilizers of X are nontrivial, otherwise the
result is obvious by choosing U = T and f to be the identity. We may do
the same if T is simplicial (with all edge groups nontrivial) as such trees
are graphs of actions with skeleton a 1-edge free splitting (see [33, 36] or [4,
Lemma 4.1]). We now assume T is not simplicial.
If some vertex action Tv of the Levitt decomposition is nongeometric

(i.e. not dual to a measured foliation on a 2-complex [28]), then one can
approximate Tv by a geometric tree U ′v ∈ U that contains a simplicial edge
e with trivial stabilizer and admits an optimal morphism fv : U ′v → Tv,
keeping point stabilizers the same; these induce an optimal morphism f ′ :
U ′ → T . Let U ′ be the tree defined as a graph of actions over X, where
Tv is replaced by U ′v (the attaching points are prescribed by the stabilizers
because all edge stabilizers in X are nontrivial). The edge e is dual to a
one-edge free splitting S of FN , and U splits as a graph of actions over S.
Up to slightly folding e (and slightly increasing its length), we can assume
that attaching points are admissible. By folding within every vertex action
A y U ′A of U ′, the morphism f ′ factors through a tree U in such a way
that the induced morphism from U to T is an isometry when restricted to
the A-minimal subtree of U . In view of Lemma 4.6, we can also ensure that
U ∈ U .
We now assume that T ∈ ĉvN is geometric. Every geometric FN -tree

splits as a graph of actions with indecomposable vertex actions, which are
either dual to arational measured foliations on surfaces, or of Levitt type.
If T contains a Levitt component, we approximate it by free and sim-

plicial actions by first running the Rips machine, and then cutting along
a little arc transverse to the foliation in a naked band, see [4, 16]: this
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remains true in ĉvN because each of these indecomposable trees has trivial
arc stabilizers. This gives an approximaton of T by a tree U that splits as a
graph of actions over a one-edge free splitting of FN , and comes equipped
with an optimal morphism onto T . We then get the required conditions on
f as in the nongeometric case.
Finally, one is left with the case where T is geometric, and all its inde-

composable subtrees are dual to measured foliations on surfaces. In this
situation, it follows from [22, Proposition 5.10] that either T splits as a
graph of actions over a one-edge free splitting of FN , or else some indecom-
posable subtree from the geometric decomposition has an unused boundary
component (this means that in the skeleton of the decomposition of T into
its indecomposable geometric components, the boundary curve is not at-
tached to any incident edge). In the latter situation, we can again cut along
a little arc with extremity on the unused boundary component, and trans-
verse to the foliation, to approximate the indecomposable component. The
required condition on f is obtained as above. �

4.4. Definition of XS,U , construction of the deformation, and
proof of Theorem 4.4

In this section, given T0 ∈ ĉvN and a neighborhood U we will define a
deformation H of ĉvN onto a particularly nice set of trees (the set XS,U

in Theorem 4.4). Here, S will be a 1-edge free splitting of FN and all trees
in XS,U will split as graphs of actions over the splitting S. The tree U ,
which comes from Proposition 4.7, will be near T0 and will be the image of
T0 under the deformation. The construction of XS,U and the deformation
(without Property (5) from Theorem 4.4) work equally well in cvN .
From now on, we fix a tree T0 ∈ ĉvN , and an open neighborhood U

of T0 in ĉvN . Let W ⊆ U be a smaller neighborhood of T0 provided by
Lemma 4.6, i.e. such that whenever a morphism from U ∈ W to T0 factors
through a tree U ′, then U ′ ∈ U . We choose a one-edge free splitting S

of FN , and a tree U ∈ W that splits as a graph of actions over S with
admissible attaching points, provided by Proposition 4.7. In particular,
there is an optimal morphism f : U → T0 such that for every vertex group
A of S with vertex action UA, the restriction of f to the A-minimal subtree
Umin
A ⊆ UA is an isometry.
The description of the deformation depends on whether the splitting S is

FN = A∗B or FN = A∗1. We will concentrate on the case of a free product,
and only briefly explain how to adapt to the case of an HNN extension, as
the details differ only in notation.
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Case 1 Case 2 Case 3

Umin
A

Umin
A

Umin
A Umin

A

Umin
A Umin

A

Umin
B Umin

B Umin
B

Umin
BUmin

BUmin
B

cA

cA cAcB

cB cA

Figure 4.2. The tree U in all three cases when the splitting S is a free
product.

Case of a free product. There will be several cases in the construction,
depending whether the attaching point uA ∈ U of the vertex actionAy UA
belongs to Umin

A or not (and similarly for uB). The three possible cases are
illustrated in Figure 4.2.

Case 1. — The free splitting S is the Bass–Serre tree of a decomposition
of FN as a free product FN = A ∗B, and both uA ∈ Umin

A and uB ∈ Umin
B .

Case 1.1. — Both A and B have rank at least 2.

Corollary 2.7 yields a continuous map bA : ĉv(A) → Map(A, ĉv(A)),
such that bA(Umin

A )(∗) = uA. We will abuse notation and write bA(TA) for
bA(TA)(∗). Similarly, we have a map bB . We make the following definition.

Definition 4.8. — Under the assumptions of Case 1.1, the set XS,U ⊆
ĉvN is the set of all trees T that split as a graph of actions over S, with
the condition that both vertex actions TA and TB are minimal, and the
attaching point on theA-side (resp. on theB-side) is bA(TA) (resp. bB(TB)).

Notice that we allow the possibility that TA or TB (or both) is the trivial
tree.

Proposition 4.9. — Let T0 ∈ ĉvN , let U be an open neighborhood of
T0 in ĉvN , and let S,U be chosen as above, and assume Case 1.1.
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Then there exist a continuous map ρ : ĉvN → XS,U with ρ(T0) = U ,
and a homotopy H : ĉvN × [0, 1] → ĉvN from the identity to ρ, such that
H({T0} × [0, 1]) ⊆ U and H(cvN × [0, 1]) ⊆ cvN .

We will start by defining ρ(T ) for all T ∈ ĉvN . Let TA be the A-minimal
subtree of T , and let TB be the B-minimal subtree of T . The tree ρ(T )
is defined as the tree that splits as a graph of actions over S with vertex
actions TA and TB , and attaching points bA(TA) and bB(TB), where the
simplicial edge from the splitting is assigned length dT (bA(TA), bB(TB)).

Let now fT : ρ(T ) → T be the morphism which is the identity when
restricted to TA or TB , and sends the simplicial edge linearly onto its image
in T . Observe that by construction we have ρ(T0) = U and fT0 = f .

Lemma 4.10. — Under the assumptions of Case 1.1, the morphism fT :
ρ(T )→ T depends continuously on the tree T ∈ ĉvN .

Proof. — We need to establish that the tree ρ(T ) depends continuously
on T . Once this is established, continuity of T 7→ fT follows from the
construction. Continuity of π(ρ(T )) ∈ cvN is obvious from the continuity
of the choice of basepoints.
Now suppose that Tn → T and notice that all nontrivial arc stabilizers

in ρ(T ) are conjugate into either A or B. By Lemma 3.5, we only need to
associate to any element α ∈ FN fixing a nondegenerate arc in ρ(T ), an
element β ∈ FN that is hyperbolic in ρ(T ) and whose axis has nondegener-
ate intersection with CharT (α), such that the relative orientations of (α, β)
eventually agree in ρ(Tn) and in ρ(T ). The element α fixes a nondegener-
ate arc in either the A- or the B-minimal subtree of T . As the minimal
A-invariant subtree of Tn converges (as an A-tree in ĉv(A)) to the minimal
A-invariant subtree of T , we are done by choosing β to be in A or B. �

Proof of Proposition 4.9. — For all T ∈ ĉvN and all t ∈ [0, 1], we let
H(T, t) := Ĥ(fT , 1 − t), with the notation from Proposition 4.5. Since
ρ(T0) = U belongs to W, Lemma 4.6 implies that Ĥ(fT0 , t) ∈ U for all
t ∈ [0, 1]. In addition, we have Ĥ(fT , 0) = ρ(T ) and Ĥ(fT , 1) = T for
all T ∈ ĉvN , and Ĥ(fT , t) ∈ cvN for all (T, t) ∈ cvN × [0, 1] in view of
Remark 2.4. �

Proof of Theorem 4.4 in Case 1.1. — Properties (1) to (4) have been
established in Proposition 4.9, so there remains to establish Property (5).
Assume that (ĉvk, ĉvk r cvk) is LCC for all k < N . We will prove that
(XS,U , XS,U r cvN ) is LCC at every point of XS,U r cvN .
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A tree T in XS,U is completely determined by TA, TB and the length of
the arc connecting the basepoints bA(TA) and bA(TB). This gives a canon-
ical homeomorphism

XS,U
∼= ĉv(A)× ĉv(B)× [0,∞)

Let (TA, TB , d) be a point in the product space and U a given neighborhood
of it. After shrinking U we may assume it has the form

U = UA × UB × J

where the three factors are open in their respective spaces and J is an
interval.
We claim that there exists a neighborhood VA ⊆ UA of TA in ĉv(A)

such that the inclusion VA ∩ cv(A) ↪→ UA ∩ cv(A) is nullhomotopic. In-
deed, if TA ∈ cv(A), this follows from local contractibility of cv(A). If
TA /∈ cv(A), this follows from our induction hypothesis which ensures
that (ĉv(A), ĉv(A)r cv(A)) is LCC. Similarly, there exists a neighborhood
VB ⊆ UB such that the inclusion VB ∩ cv(B) ↪→ UB ∩ cv(B) is nullhomo-
topic. The neighborhood

V = VA × VB × J

of T is then such that the inclusion V ∩ cvN ↪→ U ∩ cvN is nullhomotopic
(notice indeed that V ∩ cvN = (VA ∩ cv(A))× (VB ∩ cv(B))× J). �

Case 1.2. — We have rk(A) > 2 and rk(B) = 1.

In this case, we have a map bA as in Case 1.1.

Definition 4.11. — Under the assumptions of Case 1.2, the setXS,U ⊆
ĉvN is the set of all trees T that split as a graph of actions over S, with
the condition that both vertex actions TA and TB are minimal, and the
attaching point on the A-side is bA(TA).

Notice that there is no condition on the attaching point on the B-side.
Indeed, if TB is reduced to a point, then there is a unique way of attaching.
Otherwise it is a line, and the tree T does not depend on a choice of
attaching point in TB .

Using Corollary 2.7, we also get a continuous map bB : ĉvN → Map(FN ,
ĉvN ) such that for all T ∈ ĉvN , the range of bB(T ) is T , and bB(T0)(∗) =
uB , and bB(T )(∗) is contained in the characteristic set of B.

Given T ∈ ĉvN , we define ρ(T ) as follows. Let TA be the A-minimal
subtree of T , and let TB be either the trivial B-action on a point if B is
elliptic in T , or else the B-minimal subtree of T . The tree ρ(T ) is defined
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as the tree that splits as a graph of actions over S with vertex actions TA
and TB , with attaching point bA(TA) on the A-side, where the simplicial
edge from the splitting is assigned length dT (bA(TA), bB(T )).
Let now fT : ρ(T ) → T be the morphism which is the identity when

restricted to TA or TB , and sends the simplicial edge linearly onto the
segment [bA(TA), bB(T )]. Observe that by construction we have ρ(T0) = U

and fT0 = f .
Then ρ(T ) and fT depend continuously on T . The rest of the proof is

identical to Case 1.1.

Case 1.3. — We have N = 2, and the free splitting S is the Bass–Serre
tree of a decomposition of FN as a free product FN = A∗B with rk(A) = 1
and rk(B) = 1.

The argument is then exactly the same as in Case 1.2 (where both sides
are treated as the B-side in the argument).

Case 2. — The free splitting S is the Bass–Serre tree of a decomposition
of FN as a free product FN = A ∗B and uA 6∈ Umin

A , uB 6∈ Umin
B .

According to Proposition 4.7, uA is an endpoint of an arc IA ⊂ U with
nontrivial stabilizer 〈cA〉 with cA ∈ A. We choose cA so that the orientation
of the characteristic set of cA is pointing away from Umin

A . Note that IA ∩
Umin
A is a (perhaps degenerate) subarc of IA containing the other endpoint

of IA. We define cB similarly. Notice that in this case the minimality of U
implies that both A and B have rank at least 2.

Definition 4.12. — Under the assumptions of Case 2, the set XS,U ⊆
ĉvN is the set of all trees T that split as graphs of actions over the splitting
S and with attaching points in the vertex trees TA, TB belonging to the
characteristic sets of cA and cB respectively.

Next, for T ∈ ĉvN define the basepoint b′A(T ) ∈ CharT (cA) as the
projection of CharT (cB) (if the two are disjoint) or the midpoint of the
overlap with CharT (cB) (if they are not disjoint). It follows from Corol-
lary 2.7 that this basepoint varies continuously with T . Similarly define
b′B(T ) ∈ CharT (cB). Let TA be the smallest A-invariant subtree of T that
contains both Tmin

A and b′A(T ), and similarly define TB .
We now define ρ : ĉvN → XS,U . Given T ∈ ĉvN , we let ρ(T ) be the

tree that splits as a graph of actions over the free splitting S, with vertex
actions TA and TB , with attaching points b′A(T ), b′B(T ), and with arc length
dT (b′A(T ), b′B(T )). We also have the obvious morphism fT : ρ(T )→ T . Note
that ρ(T0) = U .
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−1b)

AxisT ′(aba−1b)

AxisT ′(ab)

AxisT (ab)

Figure 4.3. The tree T and a tree T ′ in the neighborhood of T in
the last case of the proof of Lemma 4.13. In the picture, we have
represented the situation where cA becomes hyperbolic in T ′.

Lemma 4.13. — Under the assumptions of Case 2, the morphism fT :
ρ(T )→ T depends continuously on T .

Proof. — Again we need to establish that the tree ρ(T ) depends contin-
uously on T . Continuity of π(ρ(T )) ∈ cvN follows from the construction
and Guirardel’s Reduction Lemma from [16, Section 4].
Notice that all nontrivial arc stabilizers in ρ(T ) are conjugate into either

A or B. By Lemma 3.5, in order to complete the proof of the continuity of
ρ, we only need to associate to any element α ∈ FN fixing a nondegenerate
arc in ρ(T ), an element β ∈ FN that is hyperbolic in ρ(T ) and whose
axis has nondegenerate intersection with CharT (α), such that the relative
orientations of (α, β) eventually agree in ρ(Tn) and in ρ(T ). This is clear if
α fixes a nondegenerate arc in either the A- or the B-minimal subtree of T
(see the proof of Lemma 4.10).
If these minimal subtrees have empty intersection in ρ(T ), and α fixes a

nondegenerate arc, say α = cA, on the segment that joins them in T , then
one can choose for β an element which is a product ab, where a ∈ A and
b ∈ B are hyperbolic in T . Indeed (see Figure 4.3), for every ε > 0 small
enough, we can find a neighborhood of T such that for all trees T ′ in this
neighborhood, the intersection of the characteristic sets of cA and cB has
size at most ε, and the distance between b′A(T ) and the projection of the

TOME 69 (2019), FASCICULE 6



2430 Mladen BESTVINA & Camille HORBEZ

axis of b to CharT ′(cA) is at most ε, while the distance between CharT ′(a)
and CharT ′(b) is at least 10ε. In addition, the characteristic sets of cA and
of baba−1 have nondegenerate intersection whose orientations disagree in a
neighborhood of T . This implies that for all trees T ′ in a neighborhood of T ,
the point b′A(T ) is at positive distance from CharT ′(a)∩CharT ′(cA) (or from
the bridge between these two characteristic sets in case their intersection
is empty). It then follows that the characteristic sets of cA and ab have
nondegenerate intersection with agreeing orientations in a neighborhood
of T . �

Proof of Theorem 4.4 in Case 2. — Using Lemma 4.13, Properties (1)
to (4) are proved in the same way as in Case 1 (Proposition 4.9 stays valid
in Case 2 with the same proof). It remains to prove Property (5). First,
using the first part of Corollary 2.7, we can choose continuous basepoints
bA : ĉv(A)→ Map(A, ĉv(A)) and bB : ĉv(B)→ Map(B, ĉv(B)) that belong
to characteristic sets of cA and cB respectively (Corollary 2.7 was stated
for cvN but orientations of intervals just carry along). Then construct a
map

Φ : XS,U → ĉv(A)× ĉv(B)× (−∞,∞)× (−∞,∞)× [0,∞)

by sending T ∈ XS,U to (Tmin
A , Tmin

B , lA, lB , d) where lA is the signed dis-
tance, measured along the oriented characteristic set of cA, from bA(TA)
(viewed as a point in T ) to b′A(T ), and similarly for lB , and d is the length
of the attached arc. This map is continuous because the various basepoints
vary continuously with T and d = dT (b′A(T ), b′B(T )).
We claim that the map Φ is a homeomorphism. Once this claim is es-

tablished, the argument that (XS,U , XS,U r cvN ) is LCC is similar to the
proof of Case 1. To prove the claim, we construct the inverse Ψ. Given
(TA, TB , lA, lB , d), where TA (resp. TB) is a minimal A-tree (resp. B-tree),
construct b′A(T ) by taking the point in CharTA

(cA) (which is oriented) at
the correct signed distance of bA(TA). More precisely, if cA is hyperbolic,
then the point b′A(T ) is uniquely defined. If cA is elliptic, it may happen
that |lA| is larger than the distance between bA(TA) and the suitable end-
point of FixTA

(cA). In that case attach an arc to this endpoint and add
it to the fixed set of cA (and equivariantly attach an orbit of arcs). Its
orientation is determined by the sign of lA. This yields a tree T ′A. Similarly
construct T ′B (in the case where cA is hyperbolic, we just let T ′A = TA,
and likewise on the B-side). Then Ψ(TA, TB , lA, lB , d) := T is the graph of
actions obtained by gluing an arc of length d between b′A(TA) and b′B(TB).
By construction Ψ is an inverse of Φ.
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Figure 4.4. The tree U in Case 2 of the proof of Proposition 4.9, and
the quotient graph of groups.

We claim that the map (TA, lA) 7→ (T ′A, b′A(TA)) is continuous; continuity
of Ψ will then follow from Guirardel’s Reduction Lemma [16, Section 4].
To prove the claim, it is enough to observe that if (TnA, lnA) converges to
(TA, lA), then for all g ∈ FN , the distance d(T ′

A
)n(b′A(TnA), gb′A(TnA)) con-

verges to dT ′
A

(b′A(TA), gb′A(TA)). This is proved by using the analogous
convergence for the basepoints bA instead of b′A, and the fact that the base-
points bA and b′A always lie at the same distance lA on the characteristic
set of cA. �

Remark 4.14. — Notice that the above proof of Property (5) does not
work in cvN where we do not have a well-defined notion of signed distance
along the characteristic set of an element of FN .

Case 3. — The free splitting S is the Bass–Serre tree of a decomposition
of FN as a free product FN = A ∗B and uA ∈ Umin

A , uB 6∈ Umin
B .

Fix a nontrivial element gA ∈ A. In this hybrid case we define basepoints
bA(T ) as in Case 1, using Lemma 2.7, and b′B(T ) as in Case 2, projecting
the characteristic set of gA to CharT (cB) (or taking the midpoint of the
overlap). The argument in this case follows Cases 1 and 2 and is left to the
reader.

Case of an HNN extension. We now briefly explain how to adapt the
above construction in the case of an HNN extension. As the argument is
the same as in the free product case (details differ only in notation), we
leave the proof of Proposition 4.9 to the reader in this case.
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We first assume thatN > 3. The tree U has one of the shapes represented
in Figure 4.4, where t denotes a stable letter for the splitting; this leads to
three cases as in the case of a free product. There are two attaching points
in UA, which we denote by u1 and u2.
The first case is the case where both u1 and u2 belong to Umin

A . As
N > 3, the rank of A is at least 2. By Corollary 2.7, there exist continuous
maps b1 : ĉv(A) → Map(A, ĉv(A)) and b2 : ĉv(A) → Map(A, ĉv(A)) such
that b1(Umin

A )(∗) = u1 and b2(Umin
A )(∗) = u2. We then define XS,U ⊆ ĉvN

to be the set of all trees T that split as a graph of actions over S, with
the condition that both vertex actions TA and TB are minimal, and the
attaching points are b1(TA) and b2(TB) respectively. We then argue as in
Case 1 of the free product case.
The second case is when neither u1 nor u2 belongs to Umin

A . Then u1 and
u2 belong to arcs stabilized by elements c1, c2 ∈ FN (in the case where c1 =
c2, the points u1 and u2 may be the two extremities of the segment fixed
by c1 = c2, but it might also happen that one of them is not an extremity,
see Case 2 in Figure 4.4). We then define a basepoint b′1(T ) to be the
projection of CharT (t−1c2t) to CharT (c1) if these sets have nondegenerate
intersection, or else the midpoint of their intersection. Similarly, we let
b′2(T ) be the projection of CharT (tc1t−1) to CharT (c2) if these sets have
nondegenerate intersection, or else as the midpoint of their intersection.
We then define XS,U ⊆ ĉvN to be the set of all trees T that split as graphs
of actions over the splitting S and with attaching points belonging to the
characteristic sets of c1 and c2 respectively. We argue as in Case 2 of the
free product case.
Finally, in the hybrid case where exactly one of the points u1, u2 belongs

to Umin
A , we define one basepoint as in Case 1, and one basepoint as in

Case 2.
We now assume that N = 2, so A = 〈a〉 is isomorphic to Z. In this case,

we define XS,U as the set of all trees T that split as a graph of actions
over S, where the vertex action is either a tree in ĉv1 or an oriented arc
stabilized by a. There is a homeomorphism between XS,U and ĉv1×R×R+,
a point in XS,U being completely determined by the data of a tree in ĉv1,
together with the signed distance between the two attaching points (when
the tree is ĉv1 is trivial, this is the signed length of the arc fixed by a), and
the length of the arc coming from S.
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Appendix A. A Čech homology lemma

We regard the n-sphere Sn as the boundary of the unit ball Bn+1 in Rn+1

and Sn−1 ⊂ Sn as the equator Sn∩ (Rn×{0}). The northern (resp. south-
ern) hemisphere Bn+ (resp. Bn−) is the set of points in Sn whose last coordi-
nate is nonnegative (resp. nonpositive). We will say that a map h : Sn → R
is standard if h−1(0) = Sn−1, h−1([0,∞)) = Bn+ and h−1((−∞, 0]) = Bn−.
The reader is refered to [13, Chapters IX, X] for basic facts about Čech
homology.

Lemma A.1. — Let n > 1, and let h̃ : Bn+1 → R be a continuous map
whose restriction to Sn = ∂Bn+1 is standard. Then the inclusion

Sn−1 ↪→ Y := h̃−1(0)

is trivial in Čech homology Ȟn−1 with Z/2-coefficients (one has to consider
reduced homology if n = 1).

Proof. — The proof is illustrated in Figure A.1. Represent Y as a nested
intersection ∩iKi of compact neighborhoods. By the continuity of Čech
homology [13, Theorem X.3.1], we have

Ȟn−1(Y ) = lim
←

Hn−1(Ki),

so it suffices to show that Sn−1 ↪→ Ki is trivial in (singular) Hn−1 for
every i.
Fix one such Ki and choose ε > 0 so that h̃−1(−2ε, 2ε) ⊂ Ki. Let

g : Bn+1 → R be a smooth map such that |h̃(x)− g(x)| < ε/2 for every x
and so that g and g0 = g|Sn have ε as a regular value. Thus V = g−1

0 (ε) ⊂
Bn+ (in blue on the figure) is an (n − 1)-manifold and it bounds the n-
manifold g−1(ε) ⊂ h̃−1(ε/2, 3ε/2) ⊂ Ki (in red on the figure). On the
other hand, V is disjoint from Sn−1 and V t Sn−1 bounds the n-manifold
g−1

0 [0, ε] ⊂ h̃−1(−ε/2, 3ε/2) ⊂ Ki (in green on the figure). This shows that
the cycle [Sn−1] is null-homologous in Ki. �

Appendix B. Proving that a space is an AR: a topological
criterion

In this appendix, we establish the ANR criterion that suits our purpose.
Recall from the introduction that a metric space X is locally n-connected
(LCn) if for every x ∈ X and every open neighborhood U of x, there exists
an open neighborhood V ⊆ U of x such that the inclusion V ↪→ U is trivial
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Sn

Sn−1

V

Figure A.1. The situation in the proof of Lemma A.1 (illustrated on
the figure in the case where n = 1).

in πi for all 0 6 i 6 n. A nowhere dense closed subset Z ⊆ X is locally
complementarily n-connected (LCCn) in X if for every z ∈ Z and every
open neighborhood U of z in X, there exists a smaller neighborhood V ⊆ U
of z in X such that the inclusion V \ Z ↪→ U \ Z is trivial in πi for all
0 6 i 6 n.
It is a classical fact that a compact n-dimensional LCn metrizable space

is an ANR [23, Theorem V.7.1], and we need the following extension. The
methods we use are classical, but we could not find this statement in the
literature, so we include a proof. We use [23] as a reference, but the tech-
niques were established earlier, see [7, 12, 25, 26].

Theorem B.1. — Let X be a compact metrizable space with dimX 6
n, and let Z ⊂ X be a nowhere dense closed subset which is LCCn in X
and such that X \ Z is LCn. Then X is an ANR and Z is a Z-set in X.

If in addition X \ Z is assumed to be contractible, then X is an AR.

Proof. — The key is to prove the following statement.

Claim. — Let Y be a compact metrizable space, with dimY 6 n+ 1, let
A ⊂ Y be a closed subset, and let f : A→ X be a map. Then there exists
an open neighborhood O of A in Y and an extension f̃ : O → X of f such
that f̃(O \A) ⊆ X \ Z.

We start by explaining how to derive Theorem B.1 from the claim. To
prove that Z is a Z-set, take Y = X × [0, 1] and A = X × {0}, and let
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f : A→ X be the identity. Then an extension to a neighborhood produces
an instantaneous homotopy of X off of Z, so Z is a Z-set (indeed, since X
is compact, a neighborhood of X × {0} includes X × [0, ε] for some ε > 0,
and we can reparametrize to X × [0, 1]).
We now argue that X is LCn, and this will establish that X is an ANR

by [23, Theorem V.7.1]. We only need to show that X is LCn at every
point z ∈ Z. Let z ∈ Z and let U be a neighborhood of z in X. Choose
a neighborhood V of z in X such that V \ Z ↪→ U \ Z is trivial in πi
for all i 6 n. Let f : Si → V be a given map. Using the instantaneous
deformation, we can homotope f to f ′ : Si → V \ Z within V. But now f ′

is nullhomotopic within U by assumption.
It remains to prove the claim. Choose an open cover W of Y \ A whose

multiplicity is at most n + 2 and so that the size of the open sets gets
small close to A. For example, one could arrange that if y ∈ W ∈ W then
diamW < 1

2d(y,A) with respect to a fixed metric d on Y (such coverings
are called canonical, see e.g. [23, II.11]). Next, let N be the nerve of W,
thus dimN 6 n + 1. There is a natural topology on A ∪ N where A is
closed, N is open, and a neighborhood of a ∈ A induced by an open set
O ⊂ Y with a ∈ O is O∩A together with the interior of the subcomplex of
N spanned by those W ∈ W contained in O. For more details see e.g. [23,
II.12].
Since there is a natural map π : Y → A ∪ N that takes A to A and

Y \ A to N (given by a partition of unity) it suffices to prove the claim
after replacing Y by A ∪N .
The extension is constructed by induction on the skeleta of N , and uses

the method of e.g. [23, Theorem V.2.1]. The only difference is that we want
in addition f̃(O \A) ⊆ X \ Z.

To extend f : A → X to the vertices of N , use the assumption that Z
is nowhere dense in X to send a vertex v close to some a ∈ A to a point
in X \ Z close to f(a). Inductively, suppose 0 6 i 6 n, and f has been
extended to the i-skeleton of some subcomplex Ni of N , in such a way that

• f(Ni) ⊆ X \ Z,
• A ∪Ni contains a neighborhood of A in A ∪N , and
• for every δ > 0, there exists a neighborhood Ui,δ of A in A ∪ Ni
such that the f -image of every i-simplex of Ni contained in Ui,δ has
diameter at most δ.

Since X is compact and Z is LCCn in X, there exists δi+1 > 0, and a
function r : (0, δi+1) → R+, with r(t) → 0 as t decreases to 0, such that
any map φ : Si → X \ Z whose image has diameter at most d < δi+1,
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extends to a map φ̃ : Bi+1 → X \ Z whose image has diameter at most
r(d). Now apply this to every (i+ 1)-simplex in Ni such that the image of
its boundary has diameter strictly smaller than δi+1. When extending to
the simplex, always arrange that the diameter of the image is controlled by
the function r. This completes the inductive step. �
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