[Sur les premier et second -groupes d’une courbe elliptique sur un corps global de caractéristique positive]
On démontre que les plus grands sous-groupes divisibles desgroupes et d’une courbe elliptique sur un corps global de caractéristique positive sont uniquement divisibles et on décrit explicitement les -groupes modulo leurs plus grands sous-groupes divisibles. On calcule également la cohomologie motivique du modèle minimal de qui est une surface elliptique sur un corps fini.
In this paper, we show that the maximal divisible subgroup of groups and of an elliptic curve over a function field is uniquely divisible. Further those -groups modulo this uniquely divisible subgroup are explicitly computed. We also calculate the motivic cohomology groups of the minimal regular model of , which is an elliptic surface over a finite field.
Révisé le :
Accepté le :
Publié le :
Keywords: K-theory, function field, elliptic curve, motivic cohomology
Mot clés : K-théorie, corps de fonctions, courbe elliptique, cohomologie motivique
Kondo, Satoshi 1, 2 ; Yasuda, Seidai 3
@article{AIF_2018__68_5_2005_0, author = {Kondo, Satoshi and Yasuda, Seidai}, title = {First and second $K$-groups of an elliptic curve over a global field of positive characteristic}, journal = {Annales de l'Institut Fourier}, pages = {2005--2067}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {68}, number = {5}, year = {2018}, doi = {10.5802/aif.3202}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3202/} }
TY - JOUR AU - Kondo, Satoshi AU - Yasuda, Seidai TI - First and second $K$-groups of an elliptic curve over a global field of positive characteristic JO - Annales de l'Institut Fourier PY - 2018 SP - 2005 EP - 2067 VL - 68 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3202/ DO - 10.5802/aif.3202 LA - en ID - AIF_2018__68_5_2005_0 ER -
%0 Journal Article %A Kondo, Satoshi %A Yasuda, Seidai %T First and second $K$-groups of an elliptic curve over a global field of positive characteristic %J Annales de l'Institut Fourier %D 2018 %P 2005-2067 %V 68 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3202/ %R 10.5802/aif.3202 %G en %F AIF_2018__68_5_2005_0
Kondo, Satoshi; Yasuda, Seidai. First and second $K$-groups of an elliptic curve over a global field of positive characteristic. Annales de l'Institut Fourier, Tome 68 (2018) no. 5, pp. 2005-2067. doi : 10.5802/aif.3202. https://aif.centre-mersenne.org/articles/10.5802/aif.3202/
[1] Resolution of singularities of arithmetical surfaces, Arithmetical Algebraic Geometry (Proc. Conf. Purdue Univ., 1963), Harper & Row, 1965, pp. 111-152 | MR | Zbl
[2] Solution of the congruence subgroup problem for and , Publ. Math., Inst. Hautes Étud. Sci. (1967) no. 33, pp. 59-137 | MR | Zbl
[3] The Milnor ring of a global field, Algebraic -theory, II: “Classical” algebraic -theory and connections with arithmetic (Proc. Conf., Seattle, Wash., Battelle Memorial Inst., 1972) (Lecture Notes in Math.), Volume 342, Springer, 1973, pp. 349-446 | MR | Zbl
[4] Théorie des intersections et théorème de Riemann-Roch. Séminaire de Géométrie Algébrique du Bois-Marie 1966–1967 (SGA 6) (Berthelot, Pierre; Grothendieck, Alexander; Illusie, Luc, eds.), Lecture Notes in Math., 225, Springer, 1971, xii+700 pages | MR | Zbl
[5] Algebraic cycles and higher -theory, Adv. Math., Volume 61 (1986) no. 3, pp. 267-304 | DOI | MR | Zbl
[6] The moving lemma for higher Chow groups, J. Algebr. Geom., Volume 3 (1994) no. 3, pp. 537-568 | MR | Zbl
[7] On the rational of a curve of type over a global field of positive characteristic, J. K-Theory, Volume 14 (2014) no. 2, pp. 313-342 | DOI | Zbl
[8] On the reciprocity law for surfaces over finite fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math., Volume 33 (1986) no. 2, pp. 283-294 | MR | Zbl
[9] Torsion dans le groupe de Chow de codimension deux, Duke Math. J., Volume 50 (1983) no. 3, pp. 763-801 | DOI | MR | Zbl
[10] Cohomologie étale. Séminaire de Géométrie Algébrique du Bois-Marie SGA 4, Lecture Notes in Math., 569, Springer, 1977, iv+312pp pages | MR | Zbl
[11] Lectures on -divisible groups, Lecture Notes in Math., 302, Springer, 1972, v+98 pages | MR | Zbl
[12] The Euler characteristic of a family of algebraic varieties, Mat. Sb. (N.S.), Volume 89(131) (1972), pp. 297-312 | MR | Zbl
[13] Tate’s conjecture, algebraic cycles and rational -theory in characteristic ., -Theory, Volume 13 (1998) no. 2, pp. 109-122 | DOI | Zbl
[14] Motivic cohomology, -theory and topological cyclic homology, Handbook of -theory, Volume 1, Springer, 2005, pp. 193-234 | MR | Zbl
[15] The -theory of fields in characteristic , Invent. Math., Volume 139 (2000) no. 3, pp. 459-493 | DOI | MR | Zbl
[16] The Bloch-Kato conjecture and a theorem of Suslin-Voevodsky, J. Reine Angew. Math., Volume 530 (2001), pp. 55-103 | DOI | MR | Zbl
[17] Riemann-Roch theorems for higher algebraic -theory, Adv. Math., Volume 40 (1981) no. 3, pp. 203-289 | DOI | MR | Zbl
[18] Finite generation of -groups of a curve over a finite field (after Daniel Quillen), Algebraic -theory, Part I (Oberwolfach, 1980) (Lecture Notes in Math.), Volume 966, Springer, 1982, pp. 69-90 | MR | Zbl
[19] Weight filtrations via commuting automorphisms, -Theory, Volume 9 (1995) no. 2, pp. 139-172 | DOI | Zbl
[20] Application d’Abel-Jacobi -adique et cycles algébriques, Duke Math. J., Volume 57 (1988) no. 2, pp. 579-613 | DOI | MR | Zbl
[21] Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. I, Publ. Math., Inst. Hautes Étud. Sci. (1961) no. 11, 167 pages | MR
[22] Revêtements étales et groupe fondamental (Grothendieck, Alexander; Raynaud, Michèle, eds.), Lecture Notes in Math., 224, Springer, 1971, xxii+447 pages Séminaire de Géométrie Algébrique du Bois Marie 1960–1961 (SGA 1), Dirigé par Alexandre Grothendieck. Augmenté de deux exposés de M. Raynaud | MR | Zbl
[23] Homological and cohomological motives of algebraic varieties, Invent. Math., Volume 142 (2000) no. 2, pp. 319-349 | DOI | Zbl
[24] Die Kohomologie -arithmetischer Gruppen über Funktionenkörpern, Invent. Math., Volume 42 (1977), pp. 135-175 | MR | Zbl
[25] Complexe de de Rham-Witt et cohomologie cristalline, Ann. Sci. Éc. Norm. Supér., Volume 12 (1979) no. 4, pp. 501-661 | MR | Zbl
[26] Finiteness, duality, and Künneth theorems in the cohomology of the de Rham-Witt complex, Algebraic geometry (Tokyo/Kyoto, 1982) (Lecture Notes in Math.), Volume 1016, Springer, 1983, pp. 20-72 | MR | Zbl
[27] Algebraic -theory, algebraic cycles and arithmetic geometry, Handbook of -theory, Volume 1, Springer, 2005, pp. 351-428 | MR | Zbl
[28] A generalization of local class field theory by using -groups. II, Proc. Japan Acad. Ser. A, Volume 54 (1978) no. 8, pp. 250-255 http://projecteuclid.org/getrecord?id=euclid.pja/1195517586 | MR | Zbl
[29] Unramified class field theory of arithmetical surfaces, Ann. Math., Volume 118 (1983) no. 2, pp. 241-275 | DOI | MR | Zbl
[30] On the second rational -group of an elliptic curve over global fields of positive characteristic., Proc. Lond. Math. Soc., Volume 102 (2011) no. 6, pp. 1053-1098 | DOI | Zbl
[31] The Riemann-Roch theorem without denominators in motivic homotopy theory, J. Pure Appl. Algebra, Volume 218 (2014) no. 8, pp. 1478-1495 | DOI | Zbl
[32] On two higher Chow groups of schemes over a finite field., Doc. Math., Volume 20 (2015), pp. 737-752 | Zbl
[33] Mixed motives, Mathematical Surveys and Monographs, 57, American Mathematical Society, 1998, x+515 pages | MR | Zbl
[34] Techniques of localization in the theory of algebraic cycles, J. Algebr. Geom., Volume 10 (2001) no. 2, pp. 299-363 | MR | Zbl
[35] Mixed motives, Handbook of -theory. Vol. 1 and 2, Springer, 2005, pp. 429-521 | Zbl
[36] The homotopy coniveau tower, J. Topol., Volume 1 (2008) no. 1, pp. 217-267 | MR | Zbl
[37] Desingularization of two-dimensional schemes, Ann. Math., Volume 107 (1978) no. 1, pp. 151-207 | MR | Zbl
[38] Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics, 6, Oxford University Press, 2002, xvi+576 pages (Translated from the French by Reinie Erné, Oxford Science Publications) | MR | Zbl
[39] -cohomology of Severi-Brauer varieties and the norm residue homomorphism, Dokl. Akad. Nauk SSSR, Volume 264 (1982) no. 3, pp. 555-559 | MR | Zbl
[40] The group for a field, Izv. Akad. Nauk SSSR Ser. Mat., Volume 54 (1990) no. 3, pp. 522-545 | MR | Zbl
[41] Duality in the flat cohomology of a surface, Ann. Sci. Éc. Norm. Supér., Volume 9 (1976) no. 2, pp. 171-201 | MR | Zbl
[42] Values of zeta functions of varieties over finite fields, Am. J. Math., Volume 108 (1986) no. 2, pp. 297-360 | DOI | MR | Zbl
[43] Algebraic -theory and quadratic forms, Invent. Math., Volume 9 (1969/1970), pp. 318-344 | MR | Zbl
[44] -homotopy theory of schemes, Publ. Math., Inst. Hautes Étud. Sci., Volume 90 (1999), pp. 45-143 | DOI | Zbl
[45] Algebraic cycle complexes: Basic properties, The arithmetic and geometry of algebraic cycles. Proceedings of the NATO Advanced Study Institute, Banff, Canada, June 7–19, 1998, Kluwer Academic Publishers, 2000, pp. 285-305 | Zbl
[46] Imbedding of an abstract variety in a complete variety, J. Math. Kyoto Univ., Volume 2 (1962), pp. 1-10 | MR | Zbl
[47] Homology of the general linear group over a local ring, and Milnor’s -theory, Izv. Akad. Nauk SSSR Ser. Mat., Volume 53 (1989) no. 1, pp. 121-146 | MR | Zbl
[48] Slopes of powers of Frobenius on crystalline cohomology, Ann. Sci. Éc. Norm. Supér., Volume 14 (1981) no. 4, pp. 369-401 | MR | Zbl
[49] Elliptic curves and wild ramification, Am. J. Math., Volume 89 (1967), pp. 1-21 | MR | Zbl
[50] An elementary proof of the topological Euler characteristic formula for an elliptic surface, Comment. Math. Univ. St. Pauli, Volume 39 (1990) no. 1, pp. 81-86 | MR | Zbl
[51] Higher Chern classes and Steenrod operations in motivic cohomology, -Theory, Volume 31 (2004) no. 4, pp. 307-321 | DOI | MR | Zbl
[52] On the cohomology and -theory of the general linear groups over a finite field, Ann. Math., Volume 96 (1972), pp. 552-586 | MR | Zbl
[53] Finite generation of the groups of rings of algebraic integers, Algebr. K-Theory I, Proc. Conf. Battelle Inst. 1972 (Lecture Notes in Math.), Volume 341, 1973, pp. 179-198 | Zbl
[54] Algebraic -theory, -homotopy and Riemann-Roch theorems, J. Topol., Volume 3 (2010) no. 2, pp. 229-264 | DOI | Zbl
[55] On the Mordell-Weil lattices, Comment. Math. Univ. St. Pauli, Volume 39 (1990) no. 2, pp. 211-240 | MR | Zbl
[56] Groupes de Chow et -théorie de variétés sur un corps fini, Math. Ann., Volume 268 (1984) no. 3, pp. 317-345 | DOI | MR | Zbl
[57] On the Grayson spectral sequence, Number theory, algebra, and algebraic geometry. Collected papers dedicated to the 80th birthday of Academician Igor’ Rostislavovich Shafarevich., Maik Nauka/Interperiodika, 2003, pp. 202-237 | Zbl
[58] Symbols in arithmetic, Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 1, Gauthier-Villars, 1971, pp. 201-211 | MR | Zbl
[59] Milnor -theory is the simplest part of algebraic -theory, -Theory, Volume 6 (1992) no. 2, pp. 177-189 | DOI | MR | Zbl
[60] Motivic cohomology groups are isomorphic to higher Chow groups in any characteristic, Int. Math. Res. Not. (2002) no. 7, pp. 351-355 | DOI | MR | Zbl
[61] Cycles, transfers, and motivic homology theories, Annals of Mathematics Studies, 143, Princeton University Press, 2000, vi+254 pages | MR | Zbl
[62] Algebraic -theory of rings of integers in local and global fields., Handbook of -theory. Vol. 1 and 2, Springer, 2005, pp. 139-190 | Zbl
Cité par Sources :