In this paper, we show that the maximal divisible subgroup of groups and of an elliptic curve over a function field is uniquely divisible. Further those -groups modulo this uniquely divisible subgroup are explicitly computed. We also calculate the motivic cohomology groups of the minimal regular model of , which is an elliptic surface over a finite field.
On démontre que les plus grands sous-groupes divisibles desgroupes et d’une courbe elliptique sur un corps global de caractéristique positive sont uniquement divisibles et on décrit explicitement les -groupes modulo leurs plus grands sous-groupes divisibles. On calcule également la cohomologie motivique du modèle minimal de qui est une surface elliptique sur un corps fini.
Revised:
Accepted:
Published online:
Keywords: K-theory, function field, elliptic curve, motivic cohomology
Mot clés : K-théorie, corps de fonctions, courbe elliptique, cohomologie motivique
Kondo, Satoshi 1, 2; Yasuda, Seidai 3
@article{AIF_2018__68_5_2005_0, author = {Kondo, Satoshi and Yasuda, Seidai}, title = {First and second $K$-groups of an elliptic curve over a global field of positive characteristic}, journal = {Annales de l'Institut Fourier}, pages = {2005--2067}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {68}, number = {5}, year = {2018}, doi = {10.5802/aif.3202}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3202/} }
TY - JOUR AU - Kondo, Satoshi AU - Yasuda, Seidai TI - First and second $K$-groups of an elliptic curve over a global field of positive characteristic JO - Annales de l'Institut Fourier PY - 2018 SP - 2005 EP - 2067 VL - 68 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3202/ DO - 10.5802/aif.3202 LA - en ID - AIF_2018__68_5_2005_0 ER -
%0 Journal Article %A Kondo, Satoshi %A Yasuda, Seidai %T First and second $K$-groups of an elliptic curve over a global field of positive characteristic %J Annales de l'Institut Fourier %D 2018 %P 2005-2067 %V 68 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3202/ %R 10.5802/aif.3202 %G en %F AIF_2018__68_5_2005_0
Kondo, Satoshi; Yasuda, Seidai. First and second $K$-groups of an elliptic curve over a global field of positive characteristic. Annales de l'Institut Fourier, Volume 68 (2018) no. 5, pp. 2005-2067. doi : 10.5802/aif.3202. https://aif.centre-mersenne.org/articles/10.5802/aif.3202/
[1] Resolution of singularities of arithmetical surfaces, Arithmetical Algebraic Geometry (Proc. Conf. Purdue Univ., 1963), Harper & Row, 1965, pp. 111-152 | MR | Zbl
[2] Solution of the congruence subgroup problem for and , Publ. Math., Inst. Hautes Étud. Sci. (1967) no. 33, pp. 59-137 | MR | Zbl
[3] The Milnor ring of a global field, Algebraic -theory, II: “Classical” algebraic -theory and connections with arithmetic (Proc. Conf., Seattle, Wash., Battelle Memorial Inst., 1972) (Lecture Notes in Math.), Volume 342, Springer, 1973, pp. 349-446 | MR | Zbl
[4] Théorie des intersections et théorème de Riemann-Roch. Séminaire de Géométrie Algébrique du Bois-Marie 1966–1967 (SGA 6) (Berthelot, Pierre; Grothendieck, Alexander; Illusie, Luc, eds.), Lecture Notes in Math., 225, Springer, 1971, xii+700 pages | MR | Zbl
[5] Algebraic cycles and higher -theory, Adv. Math., Volume 61 (1986) no. 3, pp. 267-304 | DOI | MR | Zbl
[6] The moving lemma for higher Chow groups, J. Algebr. Geom., Volume 3 (1994) no. 3, pp. 537-568 | MR | Zbl
[7] On the rational of a curve of type over a global field of positive characteristic, J. K-Theory, Volume 14 (2014) no. 2, pp. 313-342 | DOI | Zbl
[8] On the reciprocity law for surfaces over finite fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math., Volume 33 (1986) no. 2, pp. 283-294 | MR | Zbl
[9] Torsion dans le groupe de Chow de codimension deux, Duke Math. J., Volume 50 (1983) no. 3, pp. 763-801 | DOI | MR | Zbl
[10] Cohomologie étale. Séminaire de Géométrie Algébrique du Bois-Marie SGA 4, Lecture Notes in Math., 569, Springer, 1977, iv+312pp pages | MR | Zbl
[11] Lectures on -divisible groups, Lecture Notes in Math., 302, Springer, 1972, v+98 pages | MR | Zbl
[12] The Euler characteristic of a family of algebraic varieties, Mat. Sb. (N.S.), Volume 89(131) (1972), pp. 297-312 | MR | Zbl
[13] Tate’s conjecture, algebraic cycles and rational -theory in characteristic ., -Theory, Volume 13 (1998) no. 2, pp. 109-122 | DOI | Zbl
[14] Motivic cohomology, -theory and topological cyclic homology, Handbook of -theory, Volume 1, Springer, 2005, pp. 193-234 | MR | Zbl
[15] The -theory of fields in characteristic , Invent. Math., Volume 139 (2000) no. 3, pp. 459-493 | DOI | MR | Zbl
[16] The Bloch-Kato conjecture and a theorem of Suslin-Voevodsky, J. Reine Angew. Math., Volume 530 (2001), pp. 55-103 | DOI | MR | Zbl
[17] Riemann-Roch theorems for higher algebraic -theory, Adv. Math., Volume 40 (1981) no. 3, pp. 203-289 | DOI | MR | Zbl
[18] Finite generation of -groups of a curve over a finite field (after Daniel Quillen), Algebraic -theory, Part I (Oberwolfach, 1980) (Lecture Notes in Math.), Volume 966, Springer, 1982, pp. 69-90 | MR | Zbl
[19] Weight filtrations via commuting automorphisms, -Theory, Volume 9 (1995) no. 2, pp. 139-172 | DOI | Zbl
[20] Application d’Abel-Jacobi -adique et cycles algébriques, Duke Math. J., Volume 57 (1988) no. 2, pp. 579-613 | DOI | MR | Zbl
[21] Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. I, Publ. Math., Inst. Hautes Étud. Sci. (1961) no. 11, 167 pages | MR
[22] Revêtements étales et groupe fondamental (Grothendieck, Alexander; Raynaud, Michèle, eds.), Lecture Notes in Math., 224, Springer, 1971, xxii+447 pages Séminaire de Géométrie Algébrique du Bois Marie 1960–1961 (SGA 1), Dirigé par Alexandre Grothendieck. Augmenté de deux exposés de M. Raynaud | MR | Zbl
[23] Homological and cohomological motives of algebraic varieties, Invent. Math., Volume 142 (2000) no. 2, pp. 319-349 | DOI | Zbl
[24] Die Kohomologie -arithmetischer Gruppen über Funktionenkörpern, Invent. Math., Volume 42 (1977), pp. 135-175 | MR | Zbl
[25] Complexe de de Rham-Witt et cohomologie cristalline, Ann. Sci. Éc. Norm. Supér., Volume 12 (1979) no. 4, pp. 501-661 | MR | Zbl
[26] Finiteness, duality, and Künneth theorems in the cohomology of the de Rham-Witt complex, Algebraic geometry (Tokyo/Kyoto, 1982) (Lecture Notes in Math.), Volume 1016, Springer, 1983, pp. 20-72 | MR | Zbl
[27] Algebraic -theory, algebraic cycles and arithmetic geometry, Handbook of -theory, Volume 1, Springer, 2005, pp. 351-428 | MR | Zbl
[28] A generalization of local class field theory by using -groups. II, Proc. Japan Acad. Ser. A, Volume 54 (1978) no. 8, pp. 250-255 http://projecteuclid.org/getrecord?id=euclid.pja/1195517586 | MR | Zbl
[29] Unramified class field theory of arithmetical surfaces, Ann. Math., Volume 118 (1983) no. 2, pp. 241-275 | DOI | MR | Zbl
[30] On the second rational -group of an elliptic curve over global fields of positive characteristic., Proc. Lond. Math. Soc., Volume 102 (2011) no. 6, pp. 1053-1098 | DOI | Zbl
[31] The Riemann-Roch theorem without denominators in motivic homotopy theory, J. Pure Appl. Algebra, Volume 218 (2014) no. 8, pp. 1478-1495 | DOI | Zbl
[32] On two higher Chow groups of schemes over a finite field., Doc. Math., Volume 20 (2015), pp. 737-752 | Zbl
[33] Mixed motives, Mathematical Surveys and Monographs, 57, American Mathematical Society, 1998, x+515 pages | MR | Zbl
[34] Techniques of localization in the theory of algebraic cycles, J. Algebr. Geom., Volume 10 (2001) no. 2, pp. 299-363 | MR | Zbl
[35] Mixed motives, Handbook of -theory. Vol. 1 and 2, Springer, 2005, pp. 429-521 | Zbl
[36] The homotopy coniveau tower, J. Topol., Volume 1 (2008) no. 1, pp. 217-267 | MR | Zbl
[37] Desingularization of two-dimensional schemes, Ann. Math., Volume 107 (1978) no. 1, pp. 151-207 | MR | Zbl
[38] Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics, 6, Oxford University Press, 2002, xvi+576 pages (Translated from the French by Reinie Erné, Oxford Science Publications) | MR | Zbl
[39] -cohomology of Severi-Brauer varieties and the norm residue homomorphism, Dokl. Akad. Nauk SSSR, Volume 264 (1982) no. 3, pp. 555-559 | MR | Zbl
[40] The group for a field, Izv. Akad. Nauk SSSR Ser. Mat., Volume 54 (1990) no. 3, pp. 522-545 | MR | Zbl
[41] Duality in the flat cohomology of a surface, Ann. Sci. Éc. Norm. Supér., Volume 9 (1976) no. 2, pp. 171-201 | MR | Zbl
[42] Values of zeta functions of varieties over finite fields, Am. J. Math., Volume 108 (1986) no. 2, pp. 297-360 | DOI | MR | Zbl
[43] Algebraic -theory and quadratic forms, Invent. Math., Volume 9 (1969/1970), pp. 318-344 | MR | Zbl
[44] -homotopy theory of schemes, Publ. Math., Inst. Hautes Étud. Sci., Volume 90 (1999), pp. 45-143 | DOI | Zbl
[45] Algebraic cycle complexes: Basic properties, The arithmetic and geometry of algebraic cycles. Proceedings of the NATO Advanced Study Institute, Banff, Canada, June 7–19, 1998, Kluwer Academic Publishers, 2000, pp. 285-305 | Zbl
[46] Imbedding of an abstract variety in a complete variety, J. Math. Kyoto Univ., Volume 2 (1962), pp. 1-10 | MR | Zbl
[47] Homology of the general linear group over a local ring, and Milnor’s -theory, Izv. Akad. Nauk SSSR Ser. Mat., Volume 53 (1989) no. 1, pp. 121-146 | MR | Zbl
[48] Slopes of powers of Frobenius on crystalline cohomology, Ann. Sci. Éc. Norm. Supér., Volume 14 (1981) no. 4, pp. 369-401 | MR | Zbl
[49] Elliptic curves and wild ramification, Am. J. Math., Volume 89 (1967), pp. 1-21 | MR | Zbl
[50] An elementary proof of the topological Euler characteristic formula for an elliptic surface, Comment. Math. Univ. St. Pauli, Volume 39 (1990) no. 1, pp. 81-86 | MR | Zbl
[51] Higher Chern classes and Steenrod operations in motivic cohomology, -Theory, Volume 31 (2004) no. 4, pp. 307-321 | DOI | MR | Zbl
[52] On the cohomology and -theory of the general linear groups over a finite field, Ann. Math., Volume 96 (1972), pp. 552-586 | MR | Zbl
[53] Finite generation of the groups of rings of algebraic integers, Algebr. K-Theory I, Proc. Conf. Battelle Inst. 1972 (Lecture Notes in Math.), Volume 341, 1973, pp. 179-198 | Zbl
[54] Algebraic -theory, -homotopy and Riemann-Roch theorems, J. Topol., Volume 3 (2010) no. 2, pp. 229-264 | DOI | Zbl
[55] On the Mordell-Weil lattices, Comment. Math. Univ. St. Pauli, Volume 39 (1990) no. 2, pp. 211-240 | MR | Zbl
[56] Groupes de Chow et -théorie de variétés sur un corps fini, Math. Ann., Volume 268 (1984) no. 3, pp. 317-345 | DOI | MR | Zbl
[57] On the Grayson spectral sequence, Number theory, algebra, and algebraic geometry. Collected papers dedicated to the 80th birthday of Academician Igor’ Rostislavovich Shafarevich., Maik Nauka/Interperiodika, 2003, pp. 202-237 | Zbl
[58] Symbols in arithmetic, Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 1, Gauthier-Villars, 1971, pp. 201-211 | MR | Zbl
[59] Milnor -theory is the simplest part of algebraic -theory, -Theory, Volume 6 (1992) no. 2, pp. 177-189 | DOI | MR | Zbl
[60] Motivic cohomology groups are isomorphic to higher Chow groups in any characteristic, Int. Math. Res. Not. (2002) no. 7, pp. 351-355 | DOI | MR | Zbl
[61] Cycles, transfers, and motivic homology theories, Annals of Mathematics Studies, 143, Princeton University Press, 2000, vi+254 pages | MR | Zbl
[62] Algebraic -theory of rings of integers in local and global fields., Handbook of -theory. Vol. 1 and 2, Springer, 2005, pp. 139-190 | Zbl
Cited by Sources: