On the values of logarithmic residues along curves
Annales de l'Institut Fourier, Volume 68 (2018) no. 2, p. 725-766
We consider the germ of a reduced curve, possibly reducible. F. Delgado de la Mata proved that such a curve is Gorenstein if and only if its semigroup of values is symmetrical. We extend here this symmetry property to any fractional ideal of a Gorenstein curve. We then focus on the set of values of the module of logarithmic residues along plane curves or complete intersection curves, which determines and is determined by the values of the Jacobian ideal thanks to our symmetry theorem. Moreover, we give the relation with Kähler differentials, which are used in the analytic classification of plane branches. We also study the behaviour of logarithmic residues in an equisingular deformation of a plane curve.
On considère un germe de courbe réduit, éventuellement réductible. F. Delgado de la Mata a montré qu’une telle courbe est Gorenstein si et seulement si son semigroupe des multi-valuations est symétrique. Nous étendons ici cette propriété de symétrie à tout idéal fractionnaire d’une courbe Gorenstein. Nous nous intéressons ensuite à l’ensemble des multi-valuations du module des résidus logarithmiques d’une courbe plane ou intersection complète, qui détermine et est déterminé par les multi-valuations de l’idéal jacobien grâce à notre théorème de symétrie. De plus, nous donnons la relation avec les différentielles de Kähler, qui sont utilisées dans la classification analytique des branches planes. Nous étudions aussi le comportement des résidus logarithmiques dans une déformation équisingulière de courbe plane.
Received : 2015-10-27
Revised : 2017-07-21
Accepted : 2017-07-13
Published online : 2018-04-18
DOI : https://doi.org/10.5802/aif.3176
Classification:  14H20,  14B07,  32A27
Keywords: logarithmic residues, duality, Gorenstein curves, values, equisingular deformations
@article{AIF_2018__68_2_725_0,
     author = {Pol, Delphine},
     title = {On the values of logarithmic residues along curves},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {68},
     number = {2},
     year = {2018},
     pages = {725-766},
     doi = {10.5802/aif.3176},
     language = {en},
     url = {https://aif.centre-mersenne.org/item/AIF_2018__68_2_725_0}
}
On the values of logarithmic residues along curves. Annales de l'Institut Fourier, Volume 68 (2018) no. 2, pp. 725-766. doi : 10.5802/aif.3176. https://aif.centre-mersenne.org/item/AIF_2018__68_2_725_0/

[1] Aleksandrov, Aleksandr G.; Tsikh, Avgust K. Théorie des résidus de Leray et formes de Barlet sur une intersection complète singulière, C. R. Math. Acad. Sci. Paris, Tome 333 (2001) no. 11, pp. 973-978 | Article | Zbl 0999.32003

[2] Aleksandrov, Alexandr. G. Nonisolated Saito singularities, Mat. Sb., N. Ser., Tome 137(179) (1988) no. 4(12), pp. 554-567 | Zbl 0667.32010

[3] Aleksandrov, Alexandr G. Logarithmic differential forms, torsion differentials and residue, Complex Var. Theory Appl., Tome 50 (2005) no. 7-11, pp. 777-802 | Zbl 1083.32024

[4] Aleksandrov, Alexandr. G. Multidimensional residue theory and the logarithmic de Rham complex, J. Singul., Tome 5 (2012), pp. 1-18 | Zbl 1292.32010

[5] Barlet, Daniel Le faisceau ω X · sur un espace analytique X de dimension pure, Fonctions de plusieurs variables complexes, III (Sém. François Norguet, 1975–1977), Springer (Lecture Notes in Math.) Tome 670 (1978), pp. 187-204 | Zbl 0398.32009

[6] Briançon, Joël; Geandier, Françoise; Maisonobe, Philippe Déformation d’une singularité isolée d’hypersurface et polynômes de Bernstein, Bull. Soc. Math. Fr., Tome 120 (1992) no. 1, pp. 15-49 | Article | Zbl 0807.32027

[7] Briançon, Joël; Granger, Michel; Maisonobe, Philippe Le nombre de modules du germe de courbe plane x a +y b =0, Math. Ann., Tome 279 (1988) no. 3, pp. 535-551 | Article | Zbl 0607.14016

[8] Campillo, Antonio; Delgado, Félix; Gusein-Zade, Sabir M. The Alexander polynomial of a plane curve singularity via the ring of functions on it, Duke Math. J., Tome 117 (2003) no. 1, pp. 125-156 | Article | Zbl 1028.32013

[9] Cassou-Noguès, Pierrette; Płoski, Arkadiusz Invariants of plane curve singularities and Newton diagrams, Univ. Iagel. Acta Math. (2011) no. 49, pp. 9-34 | Zbl 1275.32025

[10] Eisenbud, David Commutative algebra, With a view toward algebraic geometry, Springer, Graduate Texts in Mathematics, Tome 150 (1995), xvi+785 pages | Zbl 0819.13001

[11] Faber, Eleonore Towards transversality of singular varieties: splayed divisors, Publ. Res. Inst. Math. Sci., Tome 49 (2013) no. 3, pp. 393-412 | Article | Zbl 1277.32032

[12] Granger, Michel; Schulze, Mathias Normal crossing properties of complex hypersurfaces via logarithmic residues, Compos. Math., Tome 150 (2014) no. 9, pp. 1607-1622 | Article | Zbl 1314.32043

[13] Greuel, Gert-Martin; Lossen, Cristoph; Shustin, Eugenii Introduction to singularities and deformations, Springer, Springer Monographs in Mathematics (2007), xii+471 pages | Zbl 1125.32013

[14] Hefez, Abramo; Hernandes, Marcelo E. Standard bases for local rings of branches and their modules of differentials, J. Symb. Comput., Tome 42 (2007) no. 1-2, pp. 178-191 | Article | Zbl 1121.14048

[15] Hefez, Abramo; Hernandes, Marcelo E. The analytic classification of plane branches, Bull. Lond. Math. Soc., Tome 43 (2011) no. 2, pp. 289-298 | Article | Zbl 1213.14056

[16] Hefez, Abramo; Hernandes, Marcelo E.; Hernandes, Maria E. Rodrigues The analytic classification of plane curves with two branches, Math. Z., Tome 279 (2015) no. 1-2, pp. 509-520 | Article | Zbl 1361.32038

[17] De Jong, Theo; Pfister, Gerhard Local analytic geometry, Friedr. Vieweg & Sohn, Braunschweig, Advanced Lectures in Mathematics (2000), xii+382 pages (Basic theory and applications) | Zbl 0959.32011

[18] Korell, Philipp; Schulze, Mathias; Tozzo, Laura Duality on value semigroups (2017) (https://arxiv.org/abs/1510.04072, to appear in J. Commut. Algebra)

[19] Kunz, Ernst The value-semigroup of a one-dimensional Gorenstein ring, Proc. Am. Math. Soc., Tome 25 (1970), pp. 748-751 | Article | Zbl 0197.31401

[20] Delgado De La Mata, Félix The semigroup of values of a curve singularity with several branches, Manuscr. Math., Tome 59 (1987) no. 3, pp. 347-374 | Article | Zbl 0611.14025

[21] Delgado De La Mata, Félix Gorenstein curves and symmetry of the semigroup of values, Manuscr. Math., Tome 61 (1988) no. 3, pp. 285-296 | Article | Zbl 0692.13017

[22] Michler, Ruth Torsion of differentials of hypersurfaces with isolated singularities, J. Pure Appl. Algebra, Tome 104 (1995) no. 1, pp. 81-88 | Article | Zbl 0874.13020

[23] Milnor, John Singular points of complex hypersurfaces, Princeton University Press; University of Tokyo Press, Annals of Mathematics Studies, Tome 61 (1968), iii+122 pages | Zbl 0184.48405

[24] Piene, Ragni Ideals associated to a desingularization, Algebraic geometry (Proc. Summer Meeting, Univ. Copenhagen, Copenhagen, 1978), Springer (Lecture Notes in Math.) Tome 732 (1979), pp. 503-517 | Zbl 0409.14002

[25] Pol, Delphine Logarithmic residues along plane curves, C. R. Math. Acad. Sci. Paris, Tome 353 (2015) no. 4, pp. 345-349 | Article | Zbl 1362.32019

[26] Pol, Delphine Characterizations of freeness for Cohen-Macaulay spaces (2016) (https://arxiv.org/abs/1512.06778v2 )

[27] Pol, Delphine Singularités libres, formes et résidus logarithmiques, Université d’Angers (France) (2016) (Ph. D. Thesis)

[28] Saito, Kyoji Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math., Tome 27 (1980) no. 2, pp. 265-291 | Zbl 0496.32007

[29] Schulze, Mathias On Saito’s normal crossing condition, J. Singul., Tome 14 (2016), pp. 124-147 | Zbl 1358.14023

[30] Teissier, Bernard The hunting of invariants in the geometry of discriminants, Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976), Sijthoff and Noordhoff, Alphen aan den Rijn (1977), pp. 565-678 | Zbl 0388.32010

[31] Torielli, Michele Deformations of free and linear free divisors, Ann. Inst. Fourier, Tome 63 (2013) no. 6, pp. 2097-2136 | Article | Zbl 1301.14004

[32] Zariski, Oscar Characterization of plane algebroid curves whose module of differentials has maximum torsion, Proc. Nat. Acad. Sci. U.S.A., Tome 56 (1966), pp. 781-786 | Article | Zbl 0144.20201

[33] Zariski, Oscar Le problème des modules pour les branches planes, Hermann, Paris (1986), x+212 pages (Course given at the Centre de Mathématiques de l’École Polytechnique, Paris, October–November 1973, With an appendix by Bernard Teissier) | Zbl 0592.14010