Metric Approximations of Wreath Products
Annales de l'Institut Fourier, Volume 68 (2018) no. 1, p. 423-455
Given the large class of groups already known to be sofic, there is seemingly a shortfall in results concerning their permanence properties. We address this problem for wreath products, and in particular investigate the behaviour of more general metric approximations of groups under wreath products.Our main result is the following. Suppose that H is a sofic group and G is a countable, discrete group. If G is sofic, hyperlinear, weakly sofic, or linear sofic, then GH is also sofic, hyperlinear, weakly sofic, or linear sofic respectively. In each case we construct relevant metric approximations, extending a general construction of metric approximations for GH that uses soficity of H.
On connait aujourd’hui de nombreux groupes sofiques. Néanmoins il existe peu de résultats concernant la stabilité de la propriété de soficité. Ce travail s’intéresse au produit en couronne de groupes sofiques mais aussi de groupes vérifiant des propriétés d’approximations métriques plus générales.Considérons un groupe sofique H et un groupe dénombrable discret G. Notre résultat principal démontre que si G est sofique, hyperlinéaire, faiblement sofique ou linéairement sofique, alors GH est respectivement sofique, hyperlinéaire, faiblement sofique ou linéairement sofique. Grâce à la soficité de H nous construisons explicitement dans chacun des cas ci-dessus une approximation métrique pour GH.
Received : 2016-08-15
Revised : 2017-06-27
Accepted : 2017-09-17
Published online : 2018-04-18
DOI : https://doi.org/10.5802/aif.3166
Classification:  20E26,  20F65,  43A07
Keywords: sofic groups, wreath products, hyperlinear groups, linear sofic groups, weakly sofic groups
@article{AIF_2018__68_1_423_0,
     author = {Hayes, Ben and Sale, Andrew W.},
     title = {Metric Approximations of Wreath Products},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {68},
     number = {1},
     year = {2018},
     pages = {423-455},
     doi = {10.5802/aif.3166},
     language = {en},
     url = {https://aif.centre-mersenne.org/item/AIF_2018__68_1_423_0}
}
Metric Approximations of Wreath Products. Annales de l'Institut Fourier, Volume 68 (2018) no. 1, pp. 423-455. doi : 10.5802/aif.3166. https://aif.centre-mersenne.org/item/AIF_2018__68_1_423_0/

[1] Arzhantseva, Goulnara; Păunescu, Liviu Linear sofic groups and algebras, Trans. Am. Math. Soc., Tome 369 (2017) no. 4, pp. 2285-2310 | Article | MR 3592512 | Zbl 06673314

[2] Bowen, Lewis Measure conjugacy invariants for actions of countable sofic groups, J. Am. Math. Soc., Tome 23 (2010) no. 1, pp. 217-245 | Article | MR 2552252 | Zbl 1201.37005

[3] Capraro, Valerio; Lupini, Martino Introduction to sofic and hyperlinear groups and Connes’ embedding conjecture, Springer, Lecture Notes in Mathematics, Tome 2136 (2015), viii+151 pages (With an appendix by Vladimir Pestov) | Article | MR 3408561 | Zbl 06444791

[4] Ciobanu, Laura; Holt, Derek F.; Rees, Sarah Sofic groups: graph products and graphs of groups, Pacific J. Math., Tome 271 (2014) no. 1, pp. 53-64 | Article | MR 3259760 | Zbl 1319.20034

[5] Connes, Alain Classification of injective factors. Cases II 1 , II , III λ , λ1, Ann. Math., Tome 104 (1976) no. 1, pp. 73-115 | Article | MR 0454659 | Zbl 0343.46042

[6] Dykema, Ken; Kerr, David; Pichot, Mikaël Sofic dimension for discrete measured groupoids, Trans. Am. Math. Soc., Tome 366 (2014) no. 2, pp. 707-748 | Article | MR 3130315 | Zbl 1352.20039

[7] Elek, Gábor; Lippner, Gábor Sofic equivalence relations, J. Funct. Anal., Tome 258 (2010) no. 5, pp. 1692-1708 | Article | MR 2566316 | Zbl 05674486

[8] Elek, Gábor; Szabó, Endre Sofic groups and direct finiteness, J. Algebra, Tome 280 (2004) no. 2, pp. 426-434 | Article | MR 2089244 | Zbl 1078.16021

[9] Elek, Gábor; Szabó, Endre Hyperlinearity, essentially free actions and L 2 -invariants. The sofic property, Math. Ann., Tome 332 (2005) no. 2, pp. 421-441 | Article | MR 2178069 | Zbl 1070.43002

[10] Elek, Gábor; Szabó, Endre On sofic groups, J. Group Theory, Tome 9 (2006) no. 2, pp. 161-171 | Article | MR 2220572 | Zbl 1153.20040

[11] Elek, Gábor; Szabó, Endre Sofic representations of amenable groups, Proc. Amer. Math. Soc., Tome 139 (2011) no. 12, pp. 4285-4291 | Article | MR 2823074 | Zbl 1263.43001

[12] Glebsky, Lev; Rivera, Luis Manuel Sofic groups and profinite topology on free groups, J. Algebra, Tome 320 (2008) no. 9, pp. 3512-3518 | Article | MR 2455513 | Zbl 1162.20015

[13] Gromov, Mikhael Endomorphisms of symbolic algebraic varieties, J. Eur. Math. Soc. (JEMS), Tome 1 (1999) no. 2, pp. 109-197 | Article | MR 1694588 | Zbl 0998.14001

[14] Holt, Derek F.; Rees, Sarah Some closure results for 𝒞-approximable groups, Pac. J. Math., Tome 287 (2017) no. 2, pp. 393-409 | Article | MR 3632893 | Zbl 1375.20044

[15] Iima, Kei-Ichiro; Iwamatsu, Ryo On the Jordan decomposition of tensored matrices of Jordan canonical forms, Math. J. Okayama Univ., Tome 51 (2009), pp. 133-148 | MR 2482411 | Zbl 1164.15001

[16] Kerr, David; Li, Hanfeng Entropy and the variational principle for actions of sofic groups, Invent. Math., Tome 186 (2011) no. 3, pp. 501-558 | Article | MR 2854085 | Zbl 06004405

[17] Lück, Wolfgang L 2 -invariants: theory and applications to geometry and K-theory, Springer, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., Tome 44 (2002), xvi+595 pages | Article | MR 1926649 | Zbl 1009.55001

[18] Martsinkovksky, Alex; Vlassov, Anatoly The representation rings of k[x] (http://mathserver.neu.edu/~martsinkovsky/GreenExcerpt.pdf )

[19] Păunescu, Liviu On sofic actions and equivalence relations, J. Funct. Anal., Tome 261 (2011) no. 9, pp. 2461-2485 | Article | MR 2826401 | Zbl 1271.46051

[20] Pestov, Vladimir G. Hyperlinear and sofic groups: a brief guide, Bull. Symb. Logic, Tome 14 (2008) no. 4, pp. 449-480 | Article | MR 2460675 | Zbl 1206.20048

[21] Popa, Sorin Independence properties in subalgebras of ultraproduct II 1 factors, J. Funct. Anal., Tome 266 (2014) no. 9, pp. 5818-5846 | Article | MR 3182961 | Zbl 1305.46052

[22] Rădulescu, Florin The von Neumann algebra of the non-residually finite Baumslag group a,b|ab 3 a -1 =b 2 embeds into R ω , Hot topics in operator theory, Theta (Theta Series in Advanced Mathematics) Tome 9 (2008), pp. 173-185 | MR 2436761 | Zbl 1199.46137

[23] Sale, Andrew W. Metric behaviour of the Magnus embedding, Geom. Dedicata, Tome 176 (2015), pp. 305-313 | Article | MR 3347583 | Zbl 1337.20044

[24] Vershik, Anatoli M.; Gordon, Evgeniĭ I. Groups that are locally embeddable in the class of finite groups, Algebra Anal., Tome 9 (1997) no. 1, pp. 71-97 | MR 1458419 | Zbl 0898.20016

[25] Weiss, Benjamin Sofic groups and dynamical systems, Sankhyā Ser. A, Tome 62 (2000) no. 3, pp. 350-359 (Ergodic theory and harmonic analysis (Mumbai, 1999)) | MR 1803462 | Zbl 1148.37302