The Teichmüller space of the Hirsch foliation
Annales de l'Institut Fourier, Volume 68 (2018) no. 1, p. 1-51
We prove that the Teichmüller space of the Hirsch foliation (a minimal foliation of a closed 3-manifold by non-compact hyperbolic surfaces) is homeomorphic to the space of closed curves in the plane. This allows us to show that the space of hyperbolic metrics on the foliation is a trivial principal fiber bundle. And that the structure group of this bundle, the arc-connected component of the identity in the group of homeomorphisms which are smooth on each leaf and vary continuously in the smooth topology in the transverse direction of the foliation, is contractible.
Nous prouvons que l’espace de Teichmüller du feuilletage de Hirsch (un feuilletage minimal d’une 3-variété fermée par surfaces hyperboliques non compactes) est homéomorphe à l’espace des courbes fermées du plan. Cela nous permet de prouver que l’espace des métriques hyperboliques sur le feuilletage est un fibré principal trivial. De plus, le groupe structural de ce fibré, i.e. la composante neutre du groupe des homéomorphismes qui sont lisses le long des feuilles et varient transversalement continûment dans la topologie lisse, est contractile.
Received : 2016-03-04
Revised : 2017-03-27
Accepted : 2017-04-28
Published online : 2018-04-18
DOI : https://doi.org/10.5802/aif.3150
Classification:  57R30,  30F60
Keywords: Teichmüller theory, Riemann surface foliations
@article{AIF_2018__68_1_1_0,
     author = {Alvarez, S\'ebastien and Lessa, Pablo},
     title = {The Teichm\"uller space of the Hirsch foliation},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {68},
     number = {1},
     year = {2018},
     pages = {1-51},
     doi = {10.5802/aif.3150},
     language = {en},
     url = {https://aif.centre-mersenne.org/item/AIF_2018__68_1_1_0}
}
The Teichmüller space of the Hirsch foliation. Annales de l'Institut Fourier, Volume 68 (2018) no. 1, pp. 1-51. doi : 10.5802/aif.3150. https://aif.centre-mersenne.org/item/AIF_2018__68_1_1_0/

[1] Ahlfors, Lars V. Lectures on quasiconformal mappings, American Mathematical Society, University Lecture Series, Tome 38 (2006), viii+162 pages (With supplemental chapters by C. J. Earle, I. Kra, M. Shishikura and J. H. Hubbard) | MR 2241787 (2009d:30001) | Zbl 1103.30001

[2] Ahlfors, Lars V.; Bers, Lipman Riemann’s mapping theorem for variable metrics, Ann. Math., Tome 72 (1960), pp. 385-404 | Article | MR 0115006 (22 #5813) | Zbl 0104.29902

[3] Alcalde, Fernando; Dal’Bo, Françoise; Martínez, Matilde; Verjovsky, Alberto Minimality of the horocycle flow on foliations by hyperbolic surfaces with non-trivial topology (2014) (https://arxiv.org/abs/1412.3259 )

[4] Alessandrini, Daniele; Liu, Lixin; Papadopoulos, Athanase; Su, Weixu On local comparison between various metrics on Teichmüller spaces, Geom. Dedicata, Tome 157 (2012), pp. 91-110 | Article | MR 2893480 | Zbl 1262.32017

[5] Alessandrini, Daniele; Liu, Lixin; Papadopoulos, Athanase; Su, Weixu On various Teichmüller spaces of a surface of infinite topological type, Proc. Am. Math. Soc., Tome 140 (2012) no. 2, pp. 561-574 | Article | MR 2846324 (2012k:30108) | Zbl 1252.32021

[6] Alessandrini, Daniele; Liu, Lixin; Papadopoulos, Athanase; Su, Weixu; Sun, Zongliang On Fenchel-Nielsen coordinates on Teichmüller spaces of surfaces of infinite type, Ann. Acad. Sci. Fenn. Math., Tome 36 (2011) no. 2, pp. 621-659 | Article | MR 2865518 | Zbl 1235.32010

[7] Angenent, Sigurd B. Nonlinear analytic semiflows, Proc. R. Soc. Edinb., Sect. A, Tome 115 (1990) no. 1-2, pp. 91-107 | Article | MR 1059647 (91c:34085) | Zbl 0723.34047

[8] Angenent, Sigurd B. Parabolic equations for curves on surfaces. I. Curves with p-integrable curvature, Ann. Math., Tome 132 (1990) no. 3, pp. 451-483 | Article | MR 1078266 (91k:35102) | Zbl 0789.58070

[9] Baer, Reinhold Kurventypen auf Flächen, J. Reine Angew. Math., Tome 156 (1927), pp. 231-246 | Article | MR 1581099 | Zbl 53.0547.01

[10] Berger, Melvyn S. Riemannian structures of prescribed Gaussian curvature for compact 2-manifolds, J. Differ. Geom., Tome 5 (1971), pp. 325-332 | Article | MR 0295261 (45 #4329) | Zbl 0222.53042

[11] Bonatti, Christian; Grines, Vyacheslav; Medvedev, Vladislav; Pécou, Elisabeth Topological classification of gradient-like diffeomorphisms on 3-manifolds, Topology, Tome 43 (2004) no. 2, pp. 369-391 | Article | MR 2052968 | Zbl 1056.37023

[12] Bonatti, Christian; Paoluzzi, Luisa 3-manifolds which are orbit spaces of diffeomorphisms, Topology, Tome 47 (2008) no. 2, pp. 71-100 | Article | MR 2415770 | Zbl 1165.37001

[13] Bonnot, Sylvain Topological model for a class of complex Hénon mappings, Comment. Math. Helv., Tome 81 (2006) no. 4, pp. 827-857 | Article | MR 2271224 | Zbl 1107.37033

[14] Buser, Peter Geometry and spectra of compact Riemann surfaces, Birkhäuser, Progress in Mathematics, Tome 106 (1992), xiv+454 pages | MR 1183224 (93g:58149) | Zbl 0770.53001

[15] Calegari, Danny Foliations and the geometry of 3-manifolds, Oxford University Press, Oxford Mathematical Monographs (2007), xiv+363 pages | MR 2327361 (2008k:57048) | Zbl 1118.57002

[16] Candel, Alberto Uniformization of surface laminations, Ann. Sci. Éc. Norm. Supér., Tome 26 (1993) no. 4, pp. 489-516 | Article | MR 1235439 (94f:57025) | Zbl 0785.57009

[17] Candel, Alberto; Conlon, Lawrence Foliations. I, American Mathematical Society, Providence, RI, Graduate Studies in Mathematics, Tome 23 (2000), xiv+402 pages | MR 1732868 (2002f:57058) | Zbl 0936.57001

[18] Deroin, Bertrand Nonrigidity of hyperbolic surfaces laminations, Proc. Am. Math. Soc., Tome 135 (2007) no. 3, pp. 873-881 | Article | MR 2262885 (2007h:57039) | Zbl 1110.57018

[19] Deroin, Bertrand; Vernicos, Constantin Feuilletage de Hirsch, mesures harmoniques et g-mesures, Publ. Mat. Urug., Tome 12 (2011), pp. 79-85 | MR 3012241 | Zbl 1283.57029

[20] Dudziak, James J. Vitushkin’s conjecture for removable sets, Springer, Universitext (2010), xii+331 pages | Article | MR 2676222 (2011i:30028) | Zbl 1205.30002

[21] Earle, Clifford J.; Eells, James Jun. A fibre bundle description of Teichmüller theory, J. Differ. Geom., Tome 3 (1969), pp. 19-43 | Article | MR 0276999 (43 #2737a) | Zbl 0185.32901

[22] Earle, Clifford J.; Schatz, Andrea Teichmüller theory for surfaces with boundary, J. Differ. Geom., Tome 4 (1970), pp. 169-185 | Article | MR 0277000 (43 #2737b) | Zbl 0194.52802

[23] Epstein, David Bernard Alper Curves on 2-manifolds and isotopies, Acta Math., Tome 115 (1966), pp. 83-107 | Article | MR 0214087 (35 #4938) | Zbl 0136.44605

[24] Ghys, Étienne Topologie des feuilles génériques, Ann. Math., Tome 141 (1995) no. 2, pp. 387-422 | Article | MR 1324140 (96b:57032) | Zbl 0843.57026

[25] Ghys, Étienne Laminations par surfaces de Riemann, Dynamique et géométrie complexes (Lyon, 1997), Société Mathématique de France (Panoramas et Synthèses) Tome 8 (1999), pp. ix, xi, 49-95 | MR 1760843 (2001g:37068) | Zbl 1018.37028

[26] Grayson, Matthew A. Shortening embedded curves, Ann. Math., Tome 129 (1989) no. 1, pp. 71-111 | Article | MR 979601 (90a:53050) | Zbl 0686.53036

[27] Hatcher, A. Notes on basic 3-manifolds topology (2007) (xii+195 pages, available online at http://www.math.cornell.edu/~hatcher/3M/3Mfds.pdf)

[28] Hirsch, Morris W. A stable analytic foliation with only exceptional minimal sets, Dynamical systems (Warwick 1974), Springer (Lecture Notes in Math.) Tome 468 (1975), p. 9-10 | MR 0391172 (52 #11994) | Zbl 0309.53053

[29] Hubbard, John H.; Oberste-Vorth, Ralph W. Hénon mappings in the complex domain. I. The global topology of dynamical space, Publ. Math., Inst. Hautes Étud. Sci., Tome 79 (1994), pp. 5-46 | Article | MR 1307296 (96a:58157) | Zbl 0839.54029

[30] Iglesias, Jorge; Portela, Aldo; Rovella, Alvaro C 1 stable maps: examples without saddles, Fundam. Math., Tome 208 (2010) no. 1, pp. 23-33 | Article | MR 2609218 (2011f:37035) | Zbl 1196.37052

[31] Imayoshi, Yoichi; Taniguchi, Masahiko An introduction to Teichmüller spaces, Springer (1992), xiv+279 pages (Translated and revised from the Japanese by the authors) | Article | MR 1215481 (94b:32031) | Zbl 0754.30001

[32] Kahn, Jeremy; Markovic, Vladimir The good pants homology and the Ehrenpreis Conjecture, Ann. Math., Tome 182 (2015) no. 1, pp. 1-72 | Article | MR 3374956 | Zbl 06456005

[33] Mantegazza, Carlo Lecture notes on mean curvature flow, Birkhäuser, Progress in Mathematics, Tome 290 (2011), xii+166 pages | Article | MR 2815949 | Zbl 1230.53002

[34] Moore, Calvin C.; Schochet, Claude Global analysis on foliated spaces, Cambridge University Press, Mathematical Sciences Research Institute Publications, Tome 9 (2006), xiv+293 pages | MR 2202625 (2006i:58035) | Zbl 1091.58015

[35] Penner, Robert C.; Šarić, Dragomir Teichmüller theory of the punctured solenoid, Geom. Dedicata, Tome 132 (2008), pp. 179-212 | Article | MR 2396916 (2009b:30095) | Zbl 1182.30076

[36] Šarić, Dragomir The Teichmüller theory of the solenoid, Handbook of Teichmüller theory. Vol. II, European Mathematical Society (EMS) (IRMA Lectures in Mathematics and Theoretical Physics) Tome 13 (2009), pp. 811-857 | Article | MR 2516743 (2010m:30055) | Zbl 1179.30042

[37] Schwartz, Richard A projectively natural flow for circle diffeomorphisms, Invent. Math., Tome 110 (1992) no. 3, pp. 627-647 | Article | MR 1189493 (93m:58063) | Zbl 0773.58022

[38] Sullivan, Dennis Bounds, quadratic differentials, and renormalization conjectures, Mathematics into the twenty-first century. (Providence, RI, 1988), American Mathematical Society (American Mathematical Society Centennial Publications) Tome 2 (1992), pp. 417-466 | MR 1184622 (93k:58194) | Zbl 0936.37016

[39] Sullivan, Dennis Linking the universalities of Milnor-Thurston, Feigenbaum and Ahlfors-Bers, Topological methods in modern mathematics (Stony Brook, NY, 1991), Publish or Perish, Inc. (1993), pp. 543-564 | MR 1215976 (94c:58060) | Zbl 0803.58018

[40] Sullivan, Dennis Solenoidal manifolds, J. Singul., Tome 9 (2014), pp. 203-205 | MR 3249058 | Zbl 1323.57018

[41] Verjovsky, Alberto Commentaries on the paper Solenoidal manifolds by Dennis Sullivan, J. Singul., Tome 9 (2014), pp. 245-251 | MR 3249062 | Zbl 1330.57043