Inversion d’opérateurs de courbure au voisinage d’une métrique Ricci parallèle  [ Inversion of some curvature operators near a parallel Ricci metric ]
Annales de l'Institut Fourier, Volume 67 (2017) no. 2, p. 521-538
Let (M,g) be a compact riemannian manifold without boundary, with parallel Ricci curvature. We show that some operators, affine relatively to the Ricci curvature, are locally invertible, near the metric g.
Soit (M,g) une variété riemannienne compacte sans bord, à courbure de Ricci parallèle. Nous montrons que certains opérateurs, affines en la courbure de Ricci, sont localement inversibles, au voisinage de la métrique g.
Received : 2016-05-02
Accepted : 2016-07-12
Published online : 2017-05-31
DOI : https://doi.org/10.5802/aif.3090
Classification:  53C21,  53A45,  58J05,  58J37,  35J62
Keywords: Ricci curvature, product of manifolds, Einstein metrics, symmetric 2-tensors, Quasi-linear Elliptic PDE
@article{AIF_2017__67_2_521_0,
     author = {Delay, Erwann},
     title = {Inversion d'op\'erateurs de courbure au voisinage d'une m\'etrique Ricci parall\`ele},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {67},
     number = {2},
     year = {2017},
     pages = {521-538},
     doi = {10.5802/aif.3090},
     language = {fr},
     url = {https://aif.centre-mersenne.org/item/AIF_2017__67_2_521_0}
}
Delay, Erwann. Inversion d’opérateurs de courbure au voisinage d’une métrique Ricci parallèle. Annales de l'Institut Fourier, Volume 67 (2017) no. 2, pp. 521-538. doi : 10.5802/aif.3090. https://aif.centre-mersenne.org/item/AIF_2017__67_2_521_0/

[1] Baldes, Alfred Nonexistence of Riemannian metrics with prescribed Ricci tensor, Nonlinear problems in geometry (Mobile, Ala., 1985), Amer. Math. Soc., Providence, RI (Contemp. Math.) Tome 51 (1986), pp. 1-8 | Article

[2] Besse, Arthur L. Einstein manifolds, Springer, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, Tome 10 (1987)

[3] Delanoë, Ph. Obstruction to prescribed positive Ricci curvature, Pac. J. Math., Tome 148 (1991) no. 1, pp. 11-15 | Article

[4] Delanoë, Ph. Local solvability of elliptic, and curvature, equations on compact manifolds, J. Reine Angew. Math., Tome 558 (2003), pp. 23-45 | Article

[5] Delay, Erwann Inversion d’opérateurs de courbure au voisinage de la métrique euclidiennne (https://hal-univ-avignon.archives-ouvertes.fr/hal-00973138, to appear in Bull. S.M.F.)

[6] Delay, Erwann Etude locale d’opérateurs de courbure sur l’espace hyperbolique, J. Math. Pures Appl., Tome 78 (1999) no. 4, pp. 389-430 | Article

[7] Delay, Erwann Study of some curvature operators in the neighbourhood of an asymptotically hyperbolic Einstein manifold, Adv. Math., Tome 168 (2002) no. 2, pp. 213-224 | Article

[8] Delay, Erwann; Herzlich, Marc Ricci curvature in the neighbourhood of rank-one symmetric spaces, J. Geometric Analysis, Tome 11 (2001) no. 4, pp. 573-588 | Article

[9] Deturck, Dennis M. Existence of Metrics With Prescribed Ricci Curvature : Local Theory, Invent. Math., Tome 65 (1981), pp. 179-207 | Article

[10] Deturck, Dennis M. Metrics with prescribed Ricci curvature, Seminar on Differential Geometry, Princeton Univ. Press, Princeton, N.J. (Ann. of Math. Stud.) Tome 102 (1982), pp. 525-537

[11] Deturck, Dennis M. Prescribing positive Ricci curvature on compact manifolds, Rend. Sem. Mat. Univ. Politec. Torino, Tome 43 (1985) no. 3, p. 357-369 (1986)

[12] Deturck, Dennis M.; Goldschmidt, Hubert Metrics with prescribed Ricci curvature of constant rank. I. The integrable case, Adv. Math., Tome 145 (1999) no. 1, pp. 1-97 | Article

[13] Deturck, Dennis M.; Koiso, Norihito Uniqueness and nonexistence of metrics with prescribed Ricci curvature, Ann. Inst. H. Poincaré Anal. Non Linéaire, Tome 1 (1984) no. 5, pp. 351-359 | Article

[14] Graham, C. Robin; Lee, John M. Einstein metrics with prescribed conformal infinity on the ball, Adv. Math., Tome 87 (1991) no. 2, pp. 186-225 | Article

[15] Hamilton, Richard The Ricci curvature equation, Seminar on nonlinear partial differential equations (Berkeley, Calif., 1983), Springer (Math. Sci. Res. Inst. Publ.) Tome 2 (1984), pp. 47-72 | Article

[16] Lichnerowicz, André Propagateurs et commutateurs en relativité générale, Publ. Math., Inst. Hautes Étud. Sci., Tome 10 (1961), pp. 5-56 | Article

[17] Pulemotov, Artem Metrics with Prescribed Ricci Curvature near the Boundary of a Manifold, Mathematische Annalen, Tome 357 (2013) no. 3, pp. 969-986 | Article

[18] Wu, H. Holonomy groups of indefinite metrics, Pac. J. Math., Tome 20 (1967), pp. 351-392 | Article