Inversion d’opérateurs de courbure au voisinage d’une métrique Ricci parallèle
[Inversion of some curvature operators near a parallel Ricci metric]
Annales de l'Institut Fourier, Volume 67 (2017) no. 2, pp. 521-538.

Let (M,g) be a compact riemannian manifold without boundary, with parallel Ricci curvature. We show that some operators, affine relatively to the Ricci curvature, are locally invertible, near the metric g.

Soit (M,g) une variété riemannienne compacte sans bord, à courbure de Ricci parallèle. Nous montrons que certains opérateurs, affines en la courbure de Ricci, sont localement inversibles, au voisinage de la métrique g.

Received:
Accepted:
Published online:
DOI: 10.5802/aif.3090
Classification: 53C21, 53A45, 58J05, 58J37, 35J62
Mots-clés : Courbure de Ricci, variété produit, métriques d’Einstein, 2-tenseurs symétriques, EDP elliptique quasi-linéaire.
Keywords: Ricci curvature, product of manifolds, Einstein metrics, symmetric 2-tensors, Quasi-linear Elliptic PDE

Delay, Erwann 1

1 Université d’Avignon, Labo. de Math. d’Avignon (EA 2151), 84018 Avignon (France)
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AIF_2017__67_2_521_0,
     author = {Delay, Erwann},
     title = {Inversion d{\textquoteright}op\'erateurs de courbure au voisinage d{\textquoteright}une m\'etrique {Ricci} parall\`ele},
     journal = {Annales de l'Institut Fourier},
     pages = {521--538},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {67},
     number = {2},
     year = {2017},
     doi = {10.5802/aif.3090},
     language = {fr},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3090/}
}
TY  - JOUR
AU  - Delay, Erwann
TI  - Inversion d’opérateurs de courbure au voisinage d’une métrique Ricci parallèle
JO  - Annales de l'Institut Fourier
PY  - 2017
SP  - 521
EP  - 538
VL  - 67
IS  - 2
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3090/
DO  - 10.5802/aif.3090
LA  - fr
ID  - AIF_2017__67_2_521_0
ER  - 
%0 Journal Article
%A Delay, Erwann
%T Inversion d’opérateurs de courbure au voisinage d’une métrique Ricci parallèle
%J Annales de l'Institut Fourier
%D 2017
%P 521-538
%V 67
%N 2
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3090/
%R 10.5802/aif.3090
%G fr
%F AIF_2017__67_2_521_0
Delay, Erwann. Inversion d’opérateurs de courbure au voisinage d’une métrique Ricci parallèle. Annales de l'Institut Fourier, Volume 67 (2017) no. 2, pp. 521-538. doi : 10.5802/aif.3090. https://aif.centre-mersenne.org/articles/10.5802/aif.3090/

[1] Baldes, Alfred Nonexistence of Riemannian metrics with prescribed Ricci tensor, Nonlinear problems in geometry (Mobile, Ala., 1985) (Contemp. Math.), Volume 51, Amer. Math. Soc., Providence, RI, 1986, pp. 1-8 | DOI

[2] Besse, Arthur L. Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 10, Springer, 1987

[3] Delanoë, Ph. Obstruction to prescribed positive Ricci curvature, Pac. J. Math., Volume 148 (1991) no. 1, pp. 11-15 | DOI

[4] Delanoë, Ph. Local solvability of elliptic, and curvature, equations on compact manifolds, J. Reine Angew. Math., Volume 558 (2003), pp. 23-45 | DOI

[5] Delay, Erwann Inversion d’opérateurs de courbure au voisinage de la métrique euclidiennne (https://hal-univ-avignon.archives-ouvertes.fr/hal-00973138, to appear in Bull. S.M.F.)

[6] Delay, Erwann Etude locale d’opérateurs de courbure sur l’espace hyperbolique, J. Math. Pures Appl., Volume 78 (1999) no. 4, pp. 389-430 | DOI

[7] Delay, Erwann Study of some curvature operators in the neighbourhood of an asymptotically hyperbolic Einstein manifold, Adv. Math., Volume 168 (2002) no. 2, pp. 213-224 | DOI

[8] Delay, Erwann; Herzlich, Marc Ricci curvature in the neighbourhood of rank-one symmetric spaces, J. Geometric Analysis, Volume 11 (2001) no. 4, pp. 573-588 | DOI

[9] DeTurck, Dennis M. Existence of Metrics With Prescribed Ricci Curvature : Local Theory, Invent. Math., Volume 65 (1981), pp. 179-207 | DOI

[10] DeTurck, Dennis M. Metrics with prescribed Ricci curvature, Seminar on Differential Geometry (Ann. of Math. Stud.), Volume 102, Princeton Univ. Press, Princeton, N.J., 1982, pp. 525-537

[11] DeTurck, Dennis M. Prescribing positive Ricci curvature on compact manifolds, Rend. Sem. Mat. Univ. Politec. Torino, Volume 43 (1985) no. 3, p. 357-369 (1986)

[12] DeTurck, Dennis M.; Goldschmidt, Hubert Metrics with prescribed Ricci curvature of constant rank. I. The integrable case, Adv. Math., Volume 145 (1999) no. 1, pp. 1-97 | DOI

[13] DeTurck, Dennis M.; Koiso, Norihito Uniqueness and nonexistence of metrics with prescribed Ricci curvature, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 1 (1984) no. 5, pp. 351-359 | DOI

[14] Graham, C. Robin; Lee, John M. Einstein metrics with prescribed conformal infinity on the ball, Adv. Math., Volume 87 (1991) no. 2, pp. 186-225 | DOI

[15] Hamilton, Richard The Ricci curvature equation, Seminar on nonlinear partial differential equations (Berkeley, Calif., 1983) (Math. Sci. Res. Inst. Publ.), Volume 2, Springer, 1984, pp. 47-72 | DOI

[16] Lichnerowicz, André Propagateurs et commutateurs en relativité générale, Publ. Math., Inst. Hautes Étud. Sci., Volume 10 (1961), pp. 5-56 | DOI

[17] Pulemotov, Artem Metrics with Prescribed Ricci Curvature near the Boundary of a Manifold, Mathematische Annalen, Volume 357 (2013) no. 3, pp. 969-986 | DOI

[18] Wu, H. Holonomy groups of indefinite metrics, Pac. J. Math., Volume 20 (1967), pp. 351-392 | DOI

Cited by Sources: