[Homologie et cohomologie de Hochschild des algèbres de Weyl généralisées : le cas quantique]
Nous déterminons l’homologie et la cohomologie de Hochschild des algèbres de Weyl généralisées de rang un dans le cas quantique sauf dans quelques cas exceptionnels.
We determine the Hochschild homology and cohomology of the generalized Weyl algebras of rank one which are of ‘quantum’ type in all but a few exceptional cases.
Accepté le :
DOI : 10.5802/aif.2780
Keywords: generalized Weyl algebra, Hochschild cohomology, global dimension
Mot clés : algèbre de Weyl généralisée, cohomologie de Hochschild, dimension globale
Solotar, Andrea 1 ; Suárez-Alvarez, Mariano 1 ; Vivas, Quimey 1
@article{AIF_2013__63_3_923_0, author = {Solotar, Andrea and Su\'arez-Alvarez, Mariano and Vivas, Quimey}, title = {Hochschild homology and cohomology of {Generalized} {Weyl} algebras: the quantum case}, journal = {Annales de l'Institut Fourier}, pages = {923--956}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {63}, number = {3}, year = {2013}, doi = {10.5802/aif.2780}, mrnumber = {3137476}, zbl = {1294.16007}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2780/} }
TY - JOUR AU - Solotar, Andrea AU - Suárez-Alvarez, Mariano AU - Vivas, Quimey TI - Hochschild homology and cohomology of Generalized Weyl algebras: the quantum case JO - Annales de l'Institut Fourier PY - 2013 SP - 923 EP - 956 VL - 63 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2780/ DO - 10.5802/aif.2780 LA - en ID - AIF_2013__63_3_923_0 ER -
%0 Journal Article %A Solotar, Andrea %A Suárez-Alvarez, Mariano %A Vivas, Quimey %T Hochschild homology and cohomology of Generalized Weyl algebras: the quantum case %J Annales de l'Institut Fourier %D 2013 %P 923-956 %V 63 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2780/ %R 10.5802/aif.2780 %G en %F AIF_2013__63_3_923_0
Solotar, Andrea; Suárez-Alvarez, Mariano; Vivas, Quimey. Hochschild homology and cohomology of Generalized Weyl algebras: the quantum case. Annales de l'Institut Fourier, Tome 63 (2013) no. 3, pp. 923-956. doi : 10.5802/aif.2780. https://aif.centre-mersenne.org/articles/10.5802/aif.2780/
[1] Gaps in Hochschild cohomology imply smoothness for commutative algebras, Math. Res. Lett., Volume 12 (2005) no. 5-6, pp. 789-804 | DOI | MR | Zbl
[2] Hochschild homology criteria for smoothness, Internat. Math. Res. Notices (1992) no. 1, pp. 17-25 | DOI | MR | Zbl
[3] A Hochschild homology criterium for the smoothness of an algebra, Comment. Math. Helv., Volume 69 (1994) no. 2, pp. 163-168 | MR | Zbl
[4] Generalized Weyl algebras and their representations, Algebra i Analiz, Volume 4 (1992) no. 1, pp. 75-97 | MR | Zbl
[5] Global dimension of generalized Weyl algebras, Representation theory of algebras (Cocoyoc, 1994) (CMS Conf. Proc.), Volume 18, Amer. Math. Soc., Providence, RI, 1996, pp. 81-107 | MR | Zbl
[6] Homology and cohomology of quantum complete intersections, Algebra Number Theory, Volume 2 (2008) no. 5, pp. 501-522 | DOI | MR | Zbl
[7] Hochschild homology and global dimension, Bull. Lond. Math. Soc., Volume 41 (2009) no. 3, pp. 473-482 | DOI | MR | Zbl
[8] Finite Hochschild cohomology without finite global dimension, Math. Res. Lett., Volume 12 (2005) no. 5-6, pp. 805-816 | DOI | MR | Zbl
[9] Hochschild homology and cohomology of generalized Weyl algebras, Ann. Inst. Fourier (Grenoble), Volume 53 (2003) no. 2, pp. 465-488 http://aif.cedram.org/item?id=AIF_2003__53_2_465_0 | DOI | Numdam | MR | Zbl
[10] Hochschild (co)homology dimension, J. London Math. Soc. (2), Volume 73 (2006) no. 3, pp. 657-668 | DOI | MR | Zbl
[11] Hochschild cohomology of finite-dimensional algebras, Séminaire d’Algèbre Paul Dubreil et Marie-Paul Malliavin, 39ème Année (Paris, 1987/1988) (Lecture Notes in Math.), Volume 1404, Springer, Berlin, 1989, pp. 108-126 | MR | Zbl
[12] Differential forms on regular affine algebras, Trans. Amer. Math. Soc., Volume 102 (1962), pp. 383-408 | DOI | MR | Zbl
[13] Isomorphisms between quantum generalized Weyl algebras, J. Algebra Appl., Volume 5 (2006) no. 3, pp. 271-285 | DOI | MR | Zbl
[14] Smooth algebras and vanishing of Hochschild homology, Comment. Math. Helv., Volume 65 (1990) no. 3, pp. 474-477 | DOI | MR | Zbl
[15] Commutative augmented algebras with two vanishing homology modules, Adv. Math., Volume 111 (1995) no. 1, pp. 162-165 | DOI | MR | Zbl
[16] A class of algebras similar to the enveloping algebra of , Trans. Amer. Math. Soc., Volume 322 (1990) no. 1, pp. 285-314 | DOI | MR | Zbl
[17] Two classes of algebras with infinite Hochschild homology, Proc. Amer. Math. Soc., Volume 138 (2010) no. 3, pp. 861-869 | DOI | MR | Zbl
Cité par Sources :