We determine the Hochschild homology and cohomology of the generalized Weyl algebras of rank one which are of ‘quantum’ type in all but a few exceptional cases.
Nous déterminons l’homologie et la cohomologie de Hochschild des algèbres de Weyl généralisées de rang un dans le cas quantique sauf dans quelques cas exceptionnels.
Accepted:
DOI: 10.5802/aif.2780
Keywords: generalized Weyl algebra, Hochschild cohomology, global dimension
Mot clés : algèbre de Weyl généralisée, cohomologie de Hochschild, dimension globale
Solotar, Andrea 1; Suárez-Alvarez, Mariano 1; Vivas, Quimey 1
@article{AIF_2013__63_3_923_0, author = {Solotar, Andrea and Su\'arez-Alvarez, Mariano and Vivas, Quimey}, title = {Hochschild homology and cohomology of {Generalized} {Weyl} algebras: the quantum case}, journal = {Annales de l'Institut Fourier}, pages = {923--956}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {63}, number = {3}, year = {2013}, doi = {10.5802/aif.2780}, mrnumber = {3137476}, zbl = {1294.16007}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2780/} }
TY - JOUR AU - Solotar, Andrea AU - Suárez-Alvarez, Mariano AU - Vivas, Quimey TI - Hochschild homology and cohomology of Generalized Weyl algebras: the quantum case JO - Annales de l'Institut Fourier PY - 2013 SP - 923 EP - 956 VL - 63 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2780/ DO - 10.5802/aif.2780 LA - en ID - AIF_2013__63_3_923_0 ER -
%0 Journal Article %A Solotar, Andrea %A Suárez-Alvarez, Mariano %A Vivas, Quimey %T Hochschild homology and cohomology of Generalized Weyl algebras: the quantum case %J Annales de l'Institut Fourier %D 2013 %P 923-956 %V 63 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2780/ %R 10.5802/aif.2780 %G en %F AIF_2013__63_3_923_0
Solotar, Andrea; Suárez-Alvarez, Mariano; Vivas, Quimey. Hochschild homology and cohomology of Generalized Weyl algebras: the quantum case. Annales de l'Institut Fourier, Volume 63 (2013) no. 3, pp. 923-956. doi : 10.5802/aif.2780. https://aif.centre-mersenne.org/articles/10.5802/aif.2780/
[1] Gaps in Hochschild cohomology imply smoothness for commutative algebras, Math. Res. Lett., Volume 12 (2005) no. 5-6, pp. 789-804 | DOI | MR | Zbl
[2] Hochschild homology criteria for smoothness, Internat. Math. Res. Notices (1992) no. 1, pp. 17-25 | DOI | MR | Zbl
[3] A Hochschild homology criterium for the smoothness of an algebra, Comment. Math. Helv., Volume 69 (1994) no. 2, pp. 163-168 | MR | Zbl
[4] Generalized Weyl algebras and their representations, Algebra i Analiz, Volume 4 (1992) no. 1, pp. 75-97 | MR | Zbl
[5] Global dimension of generalized Weyl algebras, Representation theory of algebras (Cocoyoc, 1994) (CMS Conf. Proc.), Volume 18, Amer. Math. Soc., Providence, RI, 1996, pp. 81-107 | MR | Zbl
[6] Homology and cohomology of quantum complete intersections, Algebra Number Theory, Volume 2 (2008) no. 5, pp. 501-522 | DOI | MR | Zbl
[7] Hochschild homology and global dimension, Bull. Lond. Math. Soc., Volume 41 (2009) no. 3, pp. 473-482 | DOI | MR | Zbl
[8] Finite Hochschild cohomology without finite global dimension, Math. Res. Lett., Volume 12 (2005) no. 5-6, pp. 805-816 | DOI | MR | Zbl
[9] Hochschild homology and cohomology of generalized Weyl algebras, Ann. Inst. Fourier (Grenoble), Volume 53 (2003) no. 2, pp. 465-488 http://aif.cedram.org/item?id=AIF_2003__53_2_465_0 | DOI | Numdam | MR | Zbl
[10] Hochschild (co)homology dimension, J. London Math. Soc. (2), Volume 73 (2006) no. 3, pp. 657-668 | DOI | MR | Zbl
[11] Hochschild cohomology of finite-dimensional algebras, Séminaire d’Algèbre Paul Dubreil et Marie-Paul Malliavin, 39ème Année (Paris, 1987/1988) (Lecture Notes in Math.), Volume 1404, Springer, Berlin, 1989, pp. 108-126 | MR | Zbl
[12] Differential forms on regular affine algebras, Trans. Amer. Math. Soc., Volume 102 (1962), pp. 383-408 | DOI | MR | Zbl
[13] Isomorphisms between quantum generalized Weyl algebras, J. Algebra Appl., Volume 5 (2006) no. 3, pp. 271-285 | DOI | MR | Zbl
[14] Smooth algebras and vanishing of Hochschild homology, Comment. Math. Helv., Volume 65 (1990) no. 3, pp. 474-477 | DOI | MR | Zbl
[15] Commutative augmented algebras with two vanishing homology modules, Adv. Math., Volume 111 (1995) no. 1, pp. 162-165 | DOI | MR | Zbl
[16] A class of algebras similar to the enveloping algebra of , Trans. Amer. Math. Soc., Volume 322 (1990) no. 1, pp. 285-314 | DOI | MR | Zbl
[17] Two classes of algebras with infinite Hochschild homology, Proc. Amer. Math. Soc., Volume 138 (2010) no. 3, pp. 861-869 | DOI | MR | Zbl
Cited by Sources: