[Principe local-global pour les formes quadratiques sur les corps de fractions d’anneaux henséliens de dimension deux]
Soit un anneau local intègre de dimension , normal, excellent et hensélien dans lequel est inversible. Soient son corps de fractions et son corps résiduel. Soit l’ensemble des valuations discrètes de rang 1 de correspondant aux points de codimension 1 des modèles propres réguliers de . On démontre qu’une forme quadratique sur satisfait le principe local-global par rapport à dans les deux cas suivants : (1) est de rang 3 ou 4 ; (2) est de rang et , où est un anneau de valuation discrète complet, avec une condition sur le corps résiduel qui est satisfaite lorsque est .
Let be a 2-dimensional normal excellent henselian local domain in which is invertible and let and be its fraction field and residue field respectively. Let be the set of rank 1 discrete valuations of corresponding to codimension 1 points of regular proper models of . We prove that a quadratic form over satisfies the local-global principle with respect to in the following two cases: (1) has rank 3 or 4; (2) has rank and , where is a complete discrete valuation ring with a not too restrictive condition on the residue field , which is satisfied when is .
Keywords: 2-dimensional local ring, local-global principle, quadratic forms, complete local domain
Mots-clés : anneau local de dimension 2, principe local-global, formes quadratiques, anneau local complet
HU, Yong 1
@article{AIF_2012__62_6_2131_0, author = {HU, Yong}, title = {Local-global principle for quadratic forms over fraction fields of two-dimensional henselian domains}, journal = {Annales de l'Institut Fourier}, pages = {2131--2143}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {62}, number = {6}, year = {2012}, doi = {10.5802/aif.2745}, mrnumber = {3060754}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2745/} }
TY - JOUR AU - HU, Yong TI - Local-global principle for quadratic forms over fraction fields of two-dimensional henselian domains JO - Annales de l'Institut Fourier PY - 2012 SP - 2131 EP - 2143 VL - 62 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2745/ DO - 10.5802/aif.2745 LA - en ID - AIF_2012__62_6_2131_0 ER -
%0 Journal Article %A HU, Yong %T Local-global principle for quadratic forms over fraction fields of two-dimensional henselian domains %J Annales de l'Institut Fourier %D 2012 %P 2131-2143 %V 62 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2745/ %R 10.5802/aif.2745 %G en %F AIF_2012__62_6_2131_0
HU, Yong. Local-global principle for quadratic forms over fraction fields of two-dimensional henselian domains. Annales de l'Institut Fourier, Tome 62 (2012) no. 6, pp. 2131-2143. doi : 10.5802/aif.2745. https://aif.centre-mersenne.org/articles/10.5802/aif.2745/
[1] The Pythagoras number of some affine algebras and local algebras, J. Reine Angew. Math., Volume 336 (1982), pp. 45-82 | DOI | MR | Zbl
[2] Quadratic forms over fraction fields of two-dimensional Henselian rings and Brauer groups of related schemes, Algebra, arithmetic and geometry, Part I, II (Mumbai, 2000) (Tata Inst. Fund. Res. Stud. Math.), Volume 16, Tata Inst. Fund. Res., Bombay, 2002, pp. 185-217 | MR | Zbl
[3] Patching and local-global principle for homogeneous spaces over function fields of -adic curves., Comment. Math. Helv. (to appear)
[4] Applications of patching to quadratic forms and central simple algebras, Invent. Math., Volume 178 (2009) no. 2, pp. 231-263 | DOI | MR
[5] Zeros of systems of -adic quadratic forms, Compos. Math., Volume 146 (2010) no. 2, pp. 271-287 | DOI | MR | Zbl
[6] On the strong Hasse principle for fields of quotients of power series rings in two variables, Math. Z., Volume 236 (2001) no. 3, pp. 531-566 | DOI | MR | Zbl
[7] Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, 134, Cambridge University Press, Cambridge, 1998 (With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original) | DOI | MR | Zbl
[8] Introduction to quadratic forms over fields, Graduate Studies in Mathematics, 67, American Mathematical Society, Providence, RI, 2005 | MR | Zbl
[9] The -invariant of -adic function fields (Preprint)
[10] Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics, 6, Oxford University Press, Oxford, 2002 (Translated from the French by Reinie Erné, Oxford Science Publications) | MR | Zbl
[11] The -invariant of the function fields of -adic curves, Ann. of Math. (2), Volume 172 (2010) no. 2, pp. 1391-1405 | DOI | MR | Zbl
[12] Local fields, Graduate Texts in Mathematics, 67, Springer-Verlag, New York, 1979 (Translated from the French by Marvin Jay Greenberg) | MR | Zbl
[13] Introduction to cyclotomic fields, Graduate Texts in Mathematics, 83, Springer-Verlag, New York, 1997 | MR | Zbl
Cité par Sources :