Une surface projective convexe est le quotient d’un ouvert proprement convexe
A convex projective surface is the quotient of a properly convex open
Mots-clés : surface, géométrie de Hilbert, géométrie hyperbolique, réseau, sous-groupes discrets des groupes de Lie
Keywords: Surface, Hilbert’s geometry, Hyperbolic geometry, Lattice, Discrete subgroup of Lie group
Marquis, Ludovic 1
@article{AIF_2012__62_1_325_0, author = {Marquis, Ludovic }, title = {Surface {Projective} {Convexe} de volume fini}, journal = {Annales de l'Institut Fourier}, pages = {325--392}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {62}, number = {1}, year = {2012}, doi = {10.5802/aif.2707}, mrnumber = {2986273}, zbl = {1254.57015}, language = {fr}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2707/} }
TY - JOUR AU - Marquis, Ludovic TI - Surface Projective Convexe de volume fini JO - Annales de l'Institut Fourier PY - 2012 SP - 325 EP - 392 VL - 62 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2707/ DO - 10.5802/aif.2707 LA - fr ID - AIF_2012__62_1_325_0 ER -
%0 Journal Article %A Marquis, Ludovic %T Surface Projective Convexe de volume fini %J Annales de l'Institut Fourier %D 2012 %P 325-392 %V 62 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2707/ %R 10.5802/aif.2707 %G fr %F AIF_2012__62_1_325_0
Marquis, Ludovic . Surface Projective Convexe de volume fini. Annales de l'Institut Fourier, Tome 62 (2012) no. 1, pp. 325-392. doi : 10.5802/aif.2707. https://aif.centre-mersenne.org/articles/10.5802/aif.2707/
[1] Automorphismes des cônes convexes, Invent. Math., Volume 141 (2000), pp. 149-193 | DOI | MR
[2] Convexes hyperboliques et fonctions quasisymétriques, Publ. Math. IHES, Volume 97 (2003), pp. 181-237 | DOI | Numdam | MR
[3] Convexes hyperpoliques et quasiisométries, Geometriae Dedicata, Volume 122 (2006), pp. 109-134 | DOI | MR
[4] Sous-groupes discrets des groupes de Lie, European Summer School in Group Theory Luminy (7-18 July 1997)
[5] Sur les variétés localement affines et localement projectives, Bulletin de la Société Mathématique de France, Volume 88 (1960), pp. 229-332 | Numdam | MR | Zbl
[6] Compact Clifford-Klein forms of symmetric spaces, Topology, Volume 2 (1963), pp. 111-122 | DOI | MR | Zbl
[7] A course in metric geometry, Graduate Studies in Mathematics, 33, American Mathematical Society, Providence, RI, 2001 | MR
[8] Convex decompositions of real projective surfaces. II : Admissible decompositions, J. Differential Geom, Volume 40 (1994), pp. 239-283 | MR | Zbl
[9] L’aire des triangles idéaux en géométrie de Hilbert, L’enseignement mathématique, Volume 50 (2004), pp. 203-237 | MR
[10] Area of ideal triangles and gromov hyperbolicity in hilbert geometry, A paraître
[11] Convex real projective structures on compact surfaces, J. Differential Geom., Volume 31 (1990), pp. 791-845 | MR | Zbl
[12] Deformation spaces associated to compact hyperbolic manifolds, Discrete groups in Geometry and Analysis Progr. Math, Volume 67 (1984), pp. 48-106 | MR | Zbl
[13] Quasi-homogeneous cones, Math. Notes, Volume 1 (1967), pp. 231-235 | DOI | Zbl
[14] Convex projective structures on Gromov-Thurston manifolds, Geometry and Topology, Volume 11 (2007), pp. 1777-1830 | DOI | MR
[15] Convex fundamental domains for properly convex real projective structures (preprint)
[16] Espace de Modules Marqués des Surfaces Projectives Convexes de Volume Fini (preprint arxiv.org/abs/0910.5839)
[17] On the classification of noncompact surfaces, Trans. Amer. Math. Soc., Volume 106 (1963), pp. 259-269 | DOI | MR | Zbl
[18] Sur les automorphismes affines des ouverts convexes saillants, Anna Scuola Normale Superiore di Pisa, Volume 24 (1970), pp. 641-665 | Numdam | MR | Zbl
[19] The theory of convex homogeneous cones, Trudy Moskov. Mat. Obšč., Volume 12 (1963), pp. 303-358 | MR | Zbl
[20] The structure group of automorphisms of a homogeneous convex cone, Trudy Moskov. Mat. Obšč., Volume 13 (1965), pp. 56-81 | MR | Zbl
- Unmarked trace spectrum rigidity on strictly convex real projective surfaces, Expositiones Mathematicae, Volume 41 (2023) no. 4, p. 125520 | DOI:10.1016/j.exmath.2023.125520
- McShane Identities for Higher Teichmüller Theory and the Goncharov–Shen Potential, Memoirs of the American Mathematical Society, Volume 286 (2023) no. 1422 | DOI:10.1090/memo/1422
- Affine deformations of quasi‐divisible convex cones, Proceedings of the London Mathematical Society, Volume 127 (2023) no. 1, p. 35 | DOI:10.1112/plms.12537
- Cusped Hitchin representations and Anosov representations of geometrically finite Fuchsian groups, Advances in Mathematics, Volume 404 (2022), p. 108439 | DOI:10.1016/j.aim.2022.108439
- Counting, equidistribution and entropy gaps at infinity with applications to cusped Hitchin representations, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2022 (2022) no. 791, p. 1 | DOI:10.1515/crelle-2022-0035
- Coordinates on the augmented moduli space of convex RP2 structures, Journal of the London Mathematical Society, Volume 104 (2021) no. 4, p. 1930 | DOI:10.1112/jlms.12488
- Primitive stable representations in higher rank semisimple Lie groups, Revista Matemática Complutense, Volume 34 (2021) no. 3, p. 715 | DOI:10.1007/s13163-020-00372-w
- Generalized cusps in real projective manifolds: classification, Journal of Topology, Volume 13 (2020) no. 4, p. 1455 | DOI:10.1112/topo.12161
- Deforming convex projective manifolds, Geometry Topology, Volume 22 (2018) no. 3, p. 1349 | DOI:10.2140/gt.2018.22.1349
- Approximability of convex bodies and volume entropy in Hilbert geometry, Pacific Journal of Mathematics, Volume 287 (2017) no. 1, p. 223 | DOI:10.2140/pjm.2017.287.223
- A convexity theorem for real projective structures, Geometriae Dedicata, Volume 182 (2016) no. 1, p. 1 | DOI:10.1007/s10711-015-0125-1
- On convex projective manifolds and cusps, Advances in Mathematics, Volume 277 (2015), p. 181 | DOI:10.1016/j.aim.2015.02.009
- Cubic differentials and finite volume convex projective surfaces, Geometry Topology, Volume 17 (2013) no. 1, p. 595 | DOI:10.2140/gt.2013.17.595
Cité par 13 documents. Sources : Crossref