Une surface projective convexe est le quotient d’un ouvert proprement convexe de l’espace projectif réel par un sous-groupe discret de . Nous donnons plusieurs caractérisations du fait qu’une surface projective convexe est de volume fini pour la mesure de Busemann. On en déduit que si n’est pas un triangle alors est strictement convexe, à bord et qu’une surface projective convexe est de volume fini si et seulement si la surface duale est de volume fini.
A convex projective surface is the quotient of a properly convex open of the projective real space by a discrete subgroup of . We give some caracterisations of the fact that a convex projective surface is of finite volume for the Busemann’s measure. We deduce that, if is not a triangle, then is strictly convex, with boundary and that a convex projective surface is of finite volume if and only if the dual surface is of finite volume.
Mots-clés : surface, géométrie de Hilbert, géométrie hyperbolique, réseau, sous-groupes discrets des groupes de Lie
Keywords: Surface, Hilbert’s geometry, Hyperbolic geometry, Lattice, Discrete subgroup of Lie group
Marquis, Ludovic  1
@article{AIF_2012__62_1_325_0, author = {Marquis, Ludovic }, title = {Surface {Projective} {Convexe} de volume fini}, journal = {Annales de l'Institut Fourier}, pages = {325--392}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {62}, number = {1}, year = {2012}, doi = {10.5802/aif.2707}, mrnumber = {2986273}, zbl = {1254.57015}, language = {fr}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2707/} }
TY - JOUR AU - Marquis, Ludovic TI - Surface Projective Convexe de volume fini JO - Annales de l'Institut Fourier PY - 2012 SP - 325 EP - 392 VL - 62 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2707/ DO - 10.5802/aif.2707 LA - fr ID - AIF_2012__62_1_325_0 ER -
%0 Journal Article %A Marquis, Ludovic %T Surface Projective Convexe de volume fini %J Annales de l'Institut Fourier %D 2012 %P 325-392 %V 62 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2707/ %R 10.5802/aif.2707 %G fr %F AIF_2012__62_1_325_0
Marquis, Ludovic . Surface Projective Convexe de volume fini. Annales de l'Institut Fourier, Tome 62 (2012) no. 1, pp. 325-392. doi : 10.5802/aif.2707. https://aif.centre-mersenne.org/articles/10.5802/aif.2707/
[1] Automorphismes des cônes convexes, Invent. Math., Volume 141 (2000), pp. 149-193 | DOI | MR
[2] Convexes hyperboliques et fonctions quasisymétriques, Publ. Math. IHES, Volume 97 (2003), pp. 181-237 | DOI | Numdam | MR
[3] Convexes hyperpoliques et quasiisométries, Geometriae Dedicata, Volume 122 (2006), pp. 109-134 | DOI | MR
[4] Sous-groupes discrets des groupes de Lie, European Summer School in Group Theory Luminy (7-18 July 1997)
[5] Sur les variétés localement affines et localement projectives, Bulletin de la Société Mathématique de France, Volume 88 (1960), pp. 229-332 | Numdam | MR | Zbl
[6] Compact Clifford-Klein forms of symmetric spaces, Topology, Volume 2 (1963), pp. 111-122 | DOI | MR | Zbl
[7] A course in metric geometry, Graduate Studies in Mathematics, 33, American Mathematical Society, Providence, RI, 2001 | MR
[8] Convex decompositions of real projective surfaces. II : Admissible decompositions, J. Differential Geom, Volume 40 (1994), pp. 239-283 | MR | Zbl
[9] L’aire des triangles idéaux en géométrie de Hilbert, L’enseignement mathématique, Volume 50 (2004), pp. 203-237 | MR
[10] Area of ideal triangles and gromov hyperbolicity in hilbert geometry, A paraître
[11] Convex real projective structures on compact surfaces, J. Differential Geom., Volume 31 (1990), pp. 791-845 | MR | Zbl
[12] Deformation spaces associated to compact hyperbolic manifolds, Discrete groups in Geometry and Analysis Progr. Math, Volume 67 (1984), pp. 48-106 | MR | Zbl
[13] Quasi-homogeneous cones, Math. Notes, Volume 1 (1967), pp. 231-235 | DOI | Zbl
[14] Convex projective structures on Gromov-Thurston manifolds, Geometry and Topology, Volume 11 (2007), pp. 1777-1830 | DOI | MR
[15] Convex fundamental domains for properly convex real projective structures (preprint)
[16] Espace de Modules Marqués des Surfaces Projectives Convexes de Volume Fini (preprint arxiv.org/abs/0910.5839)
[17] On the classification of noncompact surfaces, Trans. Amer. Math. Soc., Volume 106 (1963), pp. 259-269 | DOI | MR | Zbl
[18] Sur les automorphismes affines des ouverts convexes saillants, Anna Scuola Normale Superiore di Pisa, Volume 24 (1970), pp. 641-665 | Numdam | MR | Zbl
[19] The theory of convex homogeneous cones, Trudy Moskov. Mat. Obšč., Volume 12 (1963), pp. 303-358 | MR | Zbl
[20] The structure group of automorphisms of a homogeneous convex cone, Trudy Moskov. Mat. Obšč., Volume 13 (1965), pp. 56-81 | MR | Zbl
Cité par Sources :