[Scindage compatible maximal et diagonales des variétés de Kempf]
Lakshmibai, Mehta et Parameswaran (LMP) ont introduit la notion de multiplicité maximale dans le scindage de Frobenius.
Dans cet article, nous définissons l’analogue algébrique de cette notion et nous construisons un scindage de Frobenius avec multiplicité maximale le long de la diagonale de la variété des drapeaux complets.
Notre scindage induit aussi un scindage diagonal avec multiplicité maximale pour une classe particulière de variétés de Schubert lisses introduite par Kempf.
Comme conséquences, nous obtenons des scindages de Frobenius des fibrés tangents et des éclatements le long des diagonales dans les variétés de drapeaux, ainsi que les conjectures de LMP et de Wahl en caractéristique positive pour le groupe spécial linéaire.
Lakshmibai, Mehta and Parameswaran (LMP) introduced the notion of maximal multiplicity vanishing in Frobenius splitting. In this paper we define the algebraic analogue of this concept and construct a Frobenius splitting vanishing with maximal multiplicity on the diagonal of the full flag variety. Our splitting induces a diagonal Frobenius splitting of maximal multiplicity for a special class of smooth Schubert varieties first considered by Kempf. Consequences are Frobenius splitting of tangent bundles, of blow-ups along the diagonal in flag varieties along with the LMP and Wahl conjectures in positive characteristic for the special linear group.
Keywords: Special linear group, Schubert variety, Frobenius splitting, maximal multiplicity, Wahl’s conjecture
Mots-clés : groupe spécial linéaire, variétés de Schubert, scindage de Frobenius, multiplicité maximale, conjecture de Wahl
Lauritzen, Niels 1 ; Thomsen, Jesper Funch 1
@article{AIF_2011__61_6_2543_0, author = {Lauritzen, Niels and Thomsen, Jesper Funch}, title = {Maximal compatible splitting and diagonals of {Kempf} varieties}, journal = {Annales de l'Institut Fourier}, pages = {2543--2575}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {61}, number = {6}, year = {2011}, doi = {10.5802/aif.2682}, mrnumber = {2976320}, zbl = {1251.14037}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2682/} }
TY - JOUR AU - Lauritzen, Niels AU - Thomsen, Jesper Funch TI - Maximal compatible splitting and diagonals of Kempf varieties JO - Annales de l'Institut Fourier PY - 2011 SP - 2543 EP - 2575 VL - 61 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2682/ DO - 10.5802/aif.2682 LA - en ID - AIF_2011__61_6_2543_0 ER -
%0 Journal Article %A Lauritzen, Niels %A Thomsen, Jesper Funch %T Maximal compatible splitting and diagonals of Kempf varieties %J Annales de l'Institut Fourier %D 2011 %P 2543-2575 %V 61 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2682/ %R 10.5802/aif.2682 %G en %F AIF_2011__61_6_2543_0
Lauritzen, Niels; Thomsen, Jesper Funch. Maximal compatible splitting and diagonals of Kempf varieties. Annales de l'Institut Fourier, Tome 61 (2011) no. 6, pp. 2543-2575. doi : 10.5802/aif.2682. https://aif.centre-mersenne.org/articles/10.5802/aif.2682/
[1] Lectures on the geometry of flag varieties, Topics in cohomological studies of algebraic varieties (Trends Math.), Birkhäuser, Basel, 2005, pp. 33-85 | MR
[2] Frobenius splitting methods in geometry and representation theory, Progress in Mathematics, 231, Birkhäuser Boston Inc., Boston, MA, 2005 | MR | Zbl
[3] Wahl’s conjecture for a minuscule , Proc. Indian Acad. Sci. Math. Sci., Volume 119 (2009) no. 5, pp. 571-592 | DOI | MR | Zbl
[4] Algebraic geometry, Graduate Texts in Mathematics, 133, Springer-Verlag, New York, 1992 (A first course) | MR | Zbl
[5] Ample subvarieties of algebraic varieties, Notes written in collaboration with C. Musili. Lecture Notes in Mathematics, Vol. 156, Springer-Verlag, Berlin, 1970 | MR | Zbl
[6] Algebraic geometry, Springer-Verlag, New York, 1977 (Graduate Texts in Mathematics, No. 52) | MR | Zbl
[7] Vanishing theorems for flag manifolds, Amer. J. Math., Volume 98 (1976) no. 2, pp. 325-331 | DOI | MR | Zbl
[8] Proof of Wahl’s conjecture on surjectivity of the Gaussian map for flag varieties, Amer. J. Math., Volume 114 (1992) no. 6, pp. 1201-1220 | DOI | MR | Zbl
[9] Frobenius splitting of cotangent bundles of flag varieties, Invent. Math., Volume 136 (1999) no. 3, pp. 603-621 | DOI | MR | Zbl
[10] Kempf varieties, J. Indian Math. Soc. (N.S.), Volume 40 (1976) no. 1-4, p. 299-349 (1977) | MR | Zbl
[11] Frobenius splittings and blow-ups, J. Algebra, Volume 208 (1998) no. 1, pp. 101-128 | DOI | MR | Zbl
[12] Wahl’s conjecture holds in odd characteristics for symplectic and orthogonal Grassmannians, Cent. Eur. J. Math., Volume 7 (2009) no. 2, pp. 214-223 | DOI | MR | Zbl
[13] On Wahl’s conjecture for the Grassmannians in positive characteristic, Internat. J. Math., Volume 8 (1997) no. 4, pp. 495-498 | DOI | MR | Zbl
[14] Frobenius splitting and cohomology vanishing for Schubert varieties, Ann. of Math. (2), Volume 122 (1985) no. 1, pp. 27-40 | DOI | MR | Zbl
[15] The red book of varieties and schemes, Lecture Notes in Mathematics, 1358, Springer-Verlag, Berlin, 1999 Includes the Michigan lectures (1974) on curves and their Jacobians, With contributions by Enrico Arbarello | MR | Zbl
[16] Gaussian maps and tensor products of irreducible representations, Manuscripta Math., Volume 73 (1991) no. 3, pp. 229-259 | DOI | MR | Zbl
[17] Commutative algebra. Vol. II, Springer-Verlag, New York, 1975 (Reprint of the 1960 edition, Graduate Texts in Mathematics, Vol. 29) | MR | Zbl
Cité par Sources :