An explicit formula for the Hilbert symbol of a formal group
Annales de l'Institut Fourier, Volume 61 (2011) no. 1, p. 261-318
A Brückner-Vostokov formula for the Hilbert symbol of a formal group was established by Abrashkin under the assumption that roots of unity belong to the base field. The main motivation of this work is to remove this hypothesis. It is obtained by combining methods of (ϕ,Γ)-modules and a cohomological interpretation of Abrashkin’s technique. To do this, we build (ϕ,Γ)-modules adapted to the false Tate curve extension and generalize some related tools like the Herr complex with explicit formulas for the cup-product and the Kummer map.
Abrashkin a établi une formule de Brueckner-Vostokov pour le symbole de Hilbert d’un groupe formel sous la condition d’appartenance de racines de l’unité au corps de base. La motivation première de ce travail réside en la suppression de cette hypothèse. On l’obtient en combinant des méthodes de (ϕ,Γ)-modules et une interprétation cohomologique des techniques d’Abrashkin. Pour cela, on construit des (ϕ,Γ)-modules adaptés à l’extension dite de la fausse courbe de Tate et on généralise des outils tels que le complexe de Herr avec des formules explicites pour le cup-produit et l’application de Kummer.
DOI : https://doi.org/10.5802/aif.2602
Classification:  11F80,  11S25,  14L05,  11S31,  11S23,  14F30
Keywords: p-adic representations, (φ,Γ)-modules, formal groups, explicit reciprocity law
@article{AIF_2011__61_1_261_0,
     author = {Tavares Ribeiro, Floric},
     title = {An explicit formula for the Hilbert symbol of a formal group},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {61},
     number = {1},
     year = {2011},
     pages = {261-318},
     doi = {10.5802/aif.2602},
     zbl = {1270.11122},
     mrnumber = {2828131},
     language = {en},
     url = {https://aif.centre-mersenne.org/item/AIF_2011__61_1_261_0}
}
An explicit formula for the Hilbert symbol of a formal group. Annales de l'Institut Fourier, Volume 61 (2011) no. 1, pp. 261-318. doi : 10.5802/aif.2602. https://aif.centre-mersenne.org/item/AIF_2011__61_1_261_0/

[1] Abrashkin, V. A. A ramification filtration of the Galois group of a local field. II, Trudy Mat. Inst. Steklov., Tome 208 (1995) no. Teor. Chisel, Algebra i Algebr. Geom., pp. 18-69 (Dedicated to Academician Igor, Rostislavovich Shafarevich on the occasion of his seventieth birthday (Russian)) | MR 1730256 | Zbl 0884.11047

[2] Abrashkin, V. A. Explicit formulas for the Hilbert symbol of a formal group over Witt vectors, Izv. Ross. Akad. Nauk Ser. Mat., Tome 61 (1997) no. 3, pp. 3-56 | MR 1478558 | Zbl 0889.11041

[3] Benois, D. Périodes p-adiques et lois de réciprocité explicites, J. Reine Angew. Math., Tome 493 (1997), pp. 115-151 | Article | MR 1491810 | Zbl 1011.11078

[4] Benois, D. On Iwasawa theory of crystalline representations, Duke Math. J., Tome 104 (2000) no. 2, pp. 211-267 | Article | MR 1773559 | Zbl 0996.11072

[5] Berger, L. Représentations p-adiques et équations différentielles, Invent. Math., Tome 148 (2002) no. 2, pp. 219-284 | Article | MR 1906150 | Zbl 1113.14016

[6] Berger, L. Bloch and Kato’s exponential map: three explicit formulas, Doc. Math. (2003) no. Extra Vol., p. 99-129 (electronic) (Kazuya Kato’s fiftieth birthday.) | MR 2046596 | Zbl 1064.11077

[7] Berger, L. Limites de représentations cristallines, Compos. Math., Tome 140 (2004) no. 6, pp. 1473-1498 | MR 2098398 | Zbl 1071.11067

[8] Breuil, C. Une application de corps des normes, Compos. Math., Tome 117 (1999) no. 2, pp. 189-203 | Article | MR 1695849 | Zbl 0933.11055

[9] Cherbonnier, F.; Colmez, P. Théorie d’Iwasawa des représentations p-adiques d’un corps local, J. Amer. Math. Soc., Tome 12 (1999) no. 1, pp. 241-268 | Article | MR 1626273 | Zbl 0933.11056

[10] Coleman, R. F. The dilogarithm and the norm residue symbol, Bull. Soc. Math. France, Tome 109 (1981) no. 4, pp. 373-402 | Numdam | MR 660143 | Zbl 0493.12019

[11] Colmez, P. Périodes p-adiques des variétés abéliennes, Math. Ann., Tome 292 (1992) no. 4, pp. 629-644 | Article | MR 1157318 | Zbl 0793.14033

[12] Fontaine, J.-M. Groupes p -divisibles sur les corps locaux, Société Mathématique de France, Paris (1977) (Astérisque, No. 47-48, i+262 pages) | MR 498610

[13] Fontaine, J.-M. Représentations p-adiques des corps locaux. I, The Grothendieck Festschrift, Vol. II, Progr. Math., vol. 87, Birkhäuser Boston, Boston, MA (1990), pp. 249-309 | MR 1106901 | Zbl 0575.14038

[14] Fontaine, J.-M. Le corps des périodes p-adiques, Astérisque (1994) no. 223, pp. 59-111 (With an appendix by Pierre Colmez, Périodes p-adiques (Bures-sur-Yvette, 1988)) | MR 1293971 | Zbl 0940.14012

[15] Fontaine, J.-M.; Laffaille, G. Construction de représentations p-adiques, Ann. Sci. École Norm. Sup. (4), Tome 15 (1982) no. 4, pp. 547-608 ((1983)) | Numdam | MR 707328 | Zbl 0579.14037

[16] Herr, L. Sur la cohomologie galoisienne des corps p-adiques, Bull. Soc. Math. France, Tome 126 (1998) no. 4, pp. 563-600 | Numdam | MR 1693457 | Zbl 0967.11050

[17] Herr, L. Une approche nouvelle de la dualité locale de Tate, Math. Ann., Tome 320 (2001) no. 2, pp. 307-337 | Article | MR 1839766 | Zbl 1160.11364

[18] Honda, T. On the theory of commutative formal groups, J. Math. Soc. Japan, Tome 22 (1970), pp. 213-246 | Article | MR 255551 | Zbl 0202.03101

[19] Kisin, M. Crystalline representations and F-crystals, Algebraic geometry and number theory, Progr. Math., Birkhäuser Boston, Boston, MA, Tome 253 (2006), pp. 459-496 | MR 2263197 | Zbl 1184.11052

[20] Sen, S. On explicit reciprocity laws, J. Reine Angew. Math., Tome 313 (1980), pp. 1-26 | Article | MR 552459 | Zbl 0411.12005

[21] Serre, J.-P. Corps locaux, Hermann, Paris (1968) (Deuxième édition, Publications de l’Université de Nancago, No. VIII, 245 page.) | MR 354618

[22] Serre, J.-P. Cohomologie galoisienne, Springer-Verlag, Berlin, fifth, Lecture Notes in Mathematics (1994) (x+181 pages) | MR 1324577 | Zbl 0812.12002

[23] Tavares Ribeiro, F. ( ϕ , Γ )-modules et loi explicite de réciprocité, Université de Franche-Comté - Besançon (2008) (Ph. D. Thesis)

[24] Venjakob, O. A non-commutative Weierstrass preparation theorem and applications to Iwasawa theory, J. Reine Angew. Math., Tome 559 (2003), pp. 153-191 (With an appendix by Denis Vogel) | Article | MR 1989649 | Zbl 1051.11056

[25] Vostokov, S. V. Explicit formulas for the Hilbert symbol, Invitation to higher local fields (Münster, 1999), Geom. Topol. Publ., Coventry (Geom. Topol. Monogr.) Tome 3 (2000), p. 81-89 (electronic) | MR 1804922 | Zbl 1008.11053

[26] Vostokov, S. V.; Demchenko, O. V. An explicit formula for the Hilbert pairing of formal Honda groups, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), Tome 272 (2000) no. Vopr. Teor. Predst. Algebr i Grupp. 7, p. 86-128, 346 | MR 1811794 | Zbl 1101.14323

[27] Wach, N. Représentations p-adiques potentiellement cristallines, Bull. Soc. Math. France, Tome 124 (1996) no. 3, pp. 375-400 | Numdam | MR 1415732 | Zbl 0887.11048

[28] Wintenberger, J.-P. Le corps des normes de certaines extensions infinies de corps locaux; applications, Ann. Sci. École Norm. Sup. (4), Tome 16 (1983) no. 1, pp. 59-89 | Numdam | MR 719763 | Zbl 0516.12015