We give a new proof of the following conjecture of Yoccoz:
where , is its Siegel disk if is linearizable (or otherwise), is the conformal radius of the Siegel disk of (or if there is none) and is Yoccoz’s Brjuno function.
In a former article we obtained a first proof based on the control of parabolic explosion. Here, we present a more elementary proof based on Yoccoz’s initial methods.
We then extend this result to some new families of polynomials such as with . We also show that the conjecture does not hold for with .
Nous donnons une nouvelle preuve de la conjecture suivante de Yoccoz :
où , est son disque de Siegel si est linéarisable (ou sinon), est le rayon conforme du disque de Siegel de (ou s’il n’y en a pas) et est la fonction de Brjuno de Yoccoz.
Dans un article précédent nous avons obtenu une première preuve basée sur le contrôle de l’explosion parabolique. Ici, nous présentons une preuve plus élémentaire basée sur les méthodes initiales de Yoccoz.
Nous étendons ce résultat à quelques nouvelles familles de polynômes telle que avec . Nous montrons également que la conjecture ne tient pas pour avec .
Keywords: Siegel disks, quadratic polynomials, harmonic and subharbonic functions, conformal radius, holomorphic motions
Mot clés : disques de Siegel, polynômes quadratiques, fonctions harmoniques et sous-harmoniques, rayon conforme, mouvement holomorphe
@article{AIF_2011__61_1_319_0, author = {Buff, Xavier and Ch\'eritat, Arnaud}, title = {A new proof of a conjecture of {Yoccoz}}, journal = {Annales de l'Institut Fourier}, pages = {319--350}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {61}, number = {1}, year = {2011}, doi = {10.5802/aif.2603}, mrnumber = {2828132}, zbl = {1223.37061}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2603/} }
TY - JOUR AU - Buff, Xavier AU - Chéritat, Arnaud TI - A new proof of a conjecture of Yoccoz JO - Annales de l'Institut Fourier PY - 2011 SP - 319 EP - 350 VL - 61 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2603/ DO - 10.5802/aif.2603 LA - en ID - AIF_2011__61_1_319_0 ER -
%0 Journal Article %A Buff, Xavier %A Chéritat, Arnaud %T A new proof of a conjecture of Yoccoz %J Annales de l'Institut Fourier %D 2011 %P 319-350 %V 61 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2603/ %R 10.5802/aif.2603 %G en %F AIF_2011__61_1_319_0
Buff, Xavier; Chéritat, Arnaud. A new proof of a conjecture of Yoccoz. Annales de l'Institut Fourier, Volume 61 (2011) no. 1, pp. 319-350. doi : 10.5802/aif.2603. https://aif.centre-mersenne.org/articles/10.5802/aif.2603/
[1] Holomorphic families of injections, Acta Math., Volume 157 (1986) no. 3-4, pp. 259-286 | DOI | MR | Zbl
[2] Virtually repelling fixed points, Publ. Mat., Volume 47 (2003) no. 1, pp. 195-209 | EuDML | MR | Zbl
[3] Upper bound for the size of quadratic Siegel disks, Invent. Math., Volume 156 (2004) no. 1, pp. 1-24 | DOI | MR | Zbl
[4] The Brjuno function continuously estimates the size of quadratic Siegel disks, Ann. of Math. (2), Volume 164 (2006) no. 1, pp. 265-312 | DOI | MR | Zbl
[5] A parabolic Pommerenke-Levin-Yoccoz inequality, Fund. Math., Volume 172 (2002) no. 3, pp. 249-289 | DOI | MR | Zbl
[6] Recherche d’ensembles de Julia de mesure de Lebesgue positive, Université Paris-Sud, décembre (2001) (thèse de doctorat)
[7] On the dynamics of polynomial-like mappings, Ann. Sci. École Norm. Sup. (4), Volume 18 (1985) no. 2, pp. 287-343 | EuDML | Numdam | MR | Zbl
[8] Infinitesimal Thurston rigidity and the Fatou-Shishikura inequality (1991) (Stony Brook IMS Preprint)
[9] Linearization of structurally stable polynomials, Progress in holomorphic dynamics (Pitman Res. Notes Math. Ser.), Volume 387, Longman, Harlow, 1998, pp. 27-30 | MR | Zbl
[10] An introduction to the theory of numbers, Oxford University Press, Oxford, 2008 (Revised by D. R. Heath-Brown and J. H. Silverman) | MR | Zbl
[11] On the dynamics of rational maps, Ann. Sci. École Norm. Sup. (4), Volume 16 (1983) no. 2, pp. 193-217 | EuDML | Numdam | MR | Zbl
[12] Univalent functions, Vandenhoeck & Ruprecht, Göttingen, 1975 (With a chapter on quadratic differentials by Gerd Jensen, Studia Mathematica/Mathematische Lehrbücher, Band XXV) | MR | Zbl
[13] Potential theory in the complex plane, London Mathematical Society Student Texts, 28, Cambridge University Press, Cambridge, 1995 | DOI | MR | Zbl
[14] Linéarisation des perturbations holomorphes des rotations et applications, Mém. Soc. Math. Fr. (N.S.) (1999) no. 77, pp. viii+102 | EuDML | Numdam | MR | Zbl
[15] On the quasiconformal surgery of rational functions, Ann. Sci. École Norm. Sup. (4), Volume 20 (1987) no. 1, pp. 1-29 | EuDML | Numdam | MR | Zbl
[16] Holomorphic motions and polynomial hulls, Proc. Amer. Math. Soc., Volume 111 (1991) no. 2, pp. 347-355 | DOI | MR | Zbl
[17] Extending holomorphic motions, Acta Math., Volume 157 (1986) no. 3-4, pp. 243-257 | DOI | MR | Zbl
[18] Théorème de Siegel, nombres de Bruno et polynômes quadratiques, Astérisque (1995) no. 231, pp. 3-88 (Petits diviseurs en dimension ) | MR
Cited by Sources: