Complete real Kähler Euclidean hypersurfaces are cylinders
Annales de l'Institut Fourier, Volume 57 (2007) no. 1, p. 155-161
In this note we show that any complete Kähler (immersed) Euclidean hypersurface M 2n 2n+1 must be the product of a surface in 3 with an Euclidean factor n-1 2n-2 .
Dans cet article nous montrons que toute hypersurface Kählerienne complète immergée dans un espace Euclidien M 2n 2n+1 est le produit d’une surface de 3 et d’un facteur Euclidien n-1 2n-2 .
DOI : https://doi.org/10.5802/aif.2254
Classification:  53C40,  53C55
Keywords: Kähler submanifolds, cylinders, splitting
@article{AIF_2007__57_1_155_0,
     author = {Florit, Luis A. and Zheng, Fangyang},
     title = {Complete real K\"ahler Euclidean hypersurfaces are cylinders},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {57},
     number = {1},
     year = {2007},
     pages = {155-161},
     doi = {10.5802/aif.2254},
     zbl = {1119.53005},
     mrnumber = {2313088},
     language = {en},
     url = {https://aif.centre-mersenne.org/item/AIF_2007__57_1_155_0}
}
Complete real Kähler Euclidean hypersurfaces are cylinders. Annales de l'Institut Fourier, Volume 57 (2007) no. 1, pp. 155-161. doi : 10.5802/aif.2254. https://aif.centre-mersenne.org/item/AIF_2007__57_1_155_0/

[1] Abe, K. A complex analogue of Hartman-Nirenberg cylinder theorem, J. Differential Geom., Tome 7 (1972), pp. 453-460 | MR 383307 | Zbl 0272.53040

[2] Abe, K. On a class of hypersurfaces of 2n+1 , Duke Math. J., Tome 41 (1974), pp. 865-874 | Article | MR 350661 | Zbl 0304.53044

[3] Dajczer, M.; Gromoll, D. Real Kähler submanifolds and uniqueness of the Gauss map, J. Differential Geom., Tome 22 (1985), pp. 13-28 | MR 826421 | Zbl 0587.53051

[4] Dajczer, M.; Gromoll, D. Rigidity of complete Euclidean hypersurfaces, J. Differential Geom., Tome 31 (1990), pp. 401-416 | MR 1037409 | Zbl 0667.53003

[5] Dajczer, M.; Rodríguez, L. Complete real Kähler minimal submanifolds, J. Reine Angew. Math., Tome 419 (1991), pp. 1-8 | MR 1116914 | Zbl 0726.53041

[6] Florit, L.; Hui, W.; Zheng, F. On real Kähler Euclidean submanifolds with non-negative Ricci curvature, J. Eur. Math. Soc., Tome 7 (2005), pp. 1-11 | Article | MR 2120988 | Zbl 02148274

[7] Florit, L.; Zheng, F. Complete real Kähler Euclidean submanifolds in codimension two (Preprint at http://www.preprint.impa.br/Shadows/SERIE_A/2004/306.html)

[8] Florit, L.; Zheng, F. A local and global splitting result for real Kähler Euclidean submanifolds, Arch. Math. (Basel), Tome 84 (2005), pp. 88-95 | MR 2106408 | Zbl 02137047

[9] Hartman, P. On isometric immersions in Euclidean space of manifolds with non–negative sectional curvatures II, Trans. Amer. Math. Soc., Tome 147 (1970), pp. 529-540 | Article | Zbl 0194.22702

[10] Hartman, P.; Nirenberg, L. On spherical image maps whose Jacobians do not change sign, Amer. J. Math., Tome 81 (1959), pp. 901-920 | Article | MR 126812 | Zbl 0094.16303

[11] Ryan, P. Kähler manifolds as real hypersurfaces, Duke Math. J., Tome 40 (1973), pp. 207-213 | Article | MR 336666 | Zbl 0257.53055

[12] Takahashi, T. A note on Kählerian hypersurfaces of spaces of constant curvature, Kumamoto J. Sci. (Math.), Tome 9 (1972), pp. 21-24 | Zbl 0236.53031