In this note we show that any complete Kähler (immersed) Euclidean hypersurface must be the product of a surface in with an Euclidean factor .
Dans cet article nous montrons que toute hypersurface Kählerienne complète immergée dans un espace Euclidien est le produit d’une surface de et d’un facteur Euclidien .
Keywords: Kähler submanifolds, cylinders, splitting
Mot clés : Kähler hypersurface, cylindres, fendre
Florit, Luis A. 1; Zheng, Fangyang 2
@article{AIF_2007__57_1_155_0, author = {Florit, Luis A. and Zheng, Fangyang}, title = {Complete real {K\"ahler} {Euclidean} hypersurfaces are cylinders}, journal = {Annales de l'Institut Fourier}, pages = {155--161}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {57}, number = {1}, year = {2007}, doi = {10.5802/aif.2254}, mrnumber = {2313088}, zbl = {1119.53005}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2254/} }
TY - JOUR AU - Florit, Luis A. AU - Zheng, Fangyang TI - Complete real Kähler Euclidean hypersurfaces are cylinders JO - Annales de l'Institut Fourier PY - 2007 SP - 155 EP - 161 VL - 57 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2254/ DO - 10.5802/aif.2254 LA - en ID - AIF_2007__57_1_155_0 ER -
%0 Journal Article %A Florit, Luis A. %A Zheng, Fangyang %T Complete real Kähler Euclidean hypersurfaces are cylinders %J Annales de l'Institut Fourier %D 2007 %P 155-161 %V 57 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2254/ %R 10.5802/aif.2254 %G en %F AIF_2007__57_1_155_0
Florit, Luis A.; Zheng, Fangyang. Complete real Kähler Euclidean hypersurfaces are cylinders. Annales de l'Institut Fourier, Volume 57 (2007) no. 1, pp. 155-161. doi : 10.5802/aif.2254. https://aif.centre-mersenne.org/articles/10.5802/aif.2254/
[1] A complex analogue of Hartman-Nirenberg cylinder theorem, J. Differential Geom., Volume 7 (1972), pp. 453-460 | MR | Zbl
[2] On a class of hypersurfaces of , Duke Math. J., Volume 41 (1974), pp. 865-874 | DOI | MR | Zbl
[3] Real Kähler submanifolds and uniqueness of the Gauss map, J. Differential Geom., Volume 22 (1985), pp. 13-28 | MR | Zbl
[4] Rigidity of complete Euclidean hypersurfaces, J. Differential Geom., Volume 31 (1990), pp. 401-416 | MR | Zbl
[5] Complete real Kähler minimal submanifolds, J. Reine Angew. Math., Volume 419 (1991), pp. 1-8 | MR | Zbl
[6] On real Kähler Euclidean submanifolds with non-negative Ricci curvature, J. Eur. Math. Soc., Volume 7 (2005), pp. 1-11 | DOI | MR | Zbl
[7] Complete real Kähler Euclidean submanifolds in codimension two (Preprint at http://www.preprint.impa.br/Shadows/SERIE_A/2004/306.html)
[8] A local and global splitting result for real Kähler Euclidean submanifolds, Arch. Math. (Basel), Volume 84 (2005), pp. 88-95 | MR | Zbl
[9] On isometric immersions in Euclidean space of manifolds with non–negative sectional curvatures II, Trans. Amer. Math. Soc., Volume 147 (1970), pp. 529-540 | DOI | Zbl
[10] On spherical image maps whose Jacobians do not change sign, Amer. J. Math., Volume 81 (1959), pp. 901-920 | DOI | MR | Zbl
[11] Kähler manifolds as real hypersurfaces, Duke Math. J., Volume 40 (1973), pp. 207-213 | DOI | MR | Zbl
[12] A note on Kählerian hypersurfaces of spaces of constant curvature, Kumamoto J. Sci. (Math.), Volume 9 (1972), pp. 21-24 | Zbl
Cited by Sources: