The von Neumann algebras generated by t-gaussians
Annales de l'Institut Fourier, Volume 56 (2006) no. 2, p. 475-498
We study the t-deformation of gaussian von Neumann algebras. They appear as example in the theories of Interacting Fock spaces and conditionally free products. When the number of generators is fixed, it is proved that if t is sufficiently close to 1, then these algebras do not depend on t. In the same way, the notion of conditionally free von Neumann algebras often coincides with freeness.
Dans la théorie des probabilités non commutative, beaucoup de déformations ou généralisations de la notion de produit libre sont apparues, comme les concepts de probabilités libres conditionnelles et d’espaces de Fock interactifs. L’un des premiers exemples d’algèbres ainsi obtenu est l’objet de cet article  : les algèbres de von Neumann engendrées par un nombre fini n d’opérateurs t-gaussiens. Il s’avère qu’à n fixé, si t est suffisamment proche de 1, alors ces algèbres ne dépendent pas de t. Plus généralement, on donne une condition qui assure un isomorphisme entre un produit libre conditionnel et un produit libre réduit usuel.
DOI : https://doi.org/10.5802/aif.2190
Classification:  46L54,  46L10
Keywords: Conditionnal free product, interacting Fock space.
@article{AIF_2006__56_2_475_0,
     author = {Ricard, \'Eric},
     title = {The von Neumann algebras generated by $t$-gaussians},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {56},
     number = {2},
     year = {2006},
     pages = {475-498},
     doi = {10.5802/aif.2190},
     zbl = {1116.46056},
     mrnumber = {2226024},
     language = {en},
     url = {https://aif.centre-mersenne.org/item/AIF_2006__56_2_475_0}
}
The von Neumann algebras generated by $t$-gaussians. Annales de l'Institut Fourier, Volume 56 (2006) no. 2, pp. 475-498. doi : 10.5802/aif.2190. https://aif.centre-mersenne.org/item/AIF_2006__56_2_475_0/

[1] Accardi, L.; Bożejko, M. Interacting Fock spaces and Gaussianization of probability measures, Infin. Dimens. Anal. Quantum Probab. Relat. Top., Tome 4 (1998) no. 1, pp. 663-670 | Article | MR 1665281 | Zbl 0922.60013

[2] Boca, F. Free products of completely positive maps and spectral sets, J. Funct. Anal., Tome 97 (1991) no. 2, pp. 251-263 | Article | MR 1111181 | Zbl 0741.46024

[3] Boca, F. Completely positive maps on amalgamated product C * -algebras, Math. Scand., Tome 72 (1993) no. 2, pp. 212-222 | MR 1241816 | Zbl 0799.46066

[4] Bożejko, M.; Fendler, G. A note on certain partial sum operators (Preprint) | Zbl 05082680

[5] Bożejko, M.; Kümmerer, B.; Speicher, R. q-Gaussian processes: non-commutative and classical aspects, Comm. Math. Phys., Tome 185 (1997) no. 1, pp. 129-154 | Article | MR 1463036 | Zbl 0873.60087

[6] Bożejko, M.; Leinert, M.; Speicher, R. Convolution and limit theorems for conditionally free random variables, Pacific J. Math., Tome 175 (1996) no. 2, pp. 357-388 | MR 1432836 | Zbl 0874.60010

[7] Bożejko, M.; Speicher, R. Completely positive maps on Coxeter groups, deformed commutation relations, and operator spaces, Math. Ann., Tome 300 (1994) no. 1, pp. 97-120 | Article | MR 1289833 | Zbl 0819.20043

[8] Bożejko, M.; Wysoczański, J. Remarks on t-transformations of measures and convolutions, Ann. Inst. H. Poincaré Probab. Statist., Tome 37 (2001) no. 6, pp. 737-761 | Article | Numdam | MR 1863276 | Zbl 0995.60004

[9] Buchholz, A. L -Khintchine-Bonami inequality in free probability, Quantum probability (Gdańsk, 1997), Polish Acad. Sci., Warsaw (Banach Center Publ.) Tome 43 (1998), pp. 105-109 | MR 1649713 | Zbl 0948.47007

[10] Dykema, K. J. Faithfulness of free product states, J. Funct. Anal., Tome 154 (1998) no. 2, pp. 323-329 | Article | MR 1612705 | Zbl 0927.46034

[11] Haagerup, U. An example of a nonnuclear C * -algebra, which has the metric approximation property, Invent. Math., Tome 50 (1978/79) no. 3, pp. 279-293 | Article | MR 520930 | Zbl 0408.46046

[12] Młotkowski, W. Operator-valued version of conditionally free product, Studia Math., Tome 153 (2002) no. 1, pp. 13-30 | Article | MR 1948925 | Zbl 1036.46044

[13] Nou, A. Non injectivity of the q-deformed von Neumann algebra, Math. Ann., Tome 330 (2004) no. 1, pp. 17-38 | Article | MR 2091676 | Zbl 1060.46051

[14] Ricard, É. Factoriality of q-Gaussian von Neumann Algebras, Comm. Math. Phys., Tome 257 (2005) no. 2, pp. 659-665 | Article | MR 2164947 | Zbl 1079.81038

[15] Shlyakhtenko, D. Some estimates for non-microstates free entropy dimension with applications to q-semicircular families, Int. Math. Res. Not., Tome 51 (2004), pp. 2757-2772 | Article | MR 2130608 | Zbl 1075.46055

[16] Voiculescu, D. V.; Dykema, K. J.; Nica, A. Free random variables, American Mathematical Society, Providence, RI, CRM Monograph Series, Tome 1 (1992) (A noncommutative probability approach to free products with applications to random matrices, operator algebras and harmonic analysis on free groups) | MR 1217253 | Zbl 0795.46049

[17] Wojakowski, Ł. Probabilistyka interpolujaca pomiedzy wolna boolowska, Wrocław University (2004) (Ph. D. Thesis)

[18] Wysoczański, J. The von Neumann algebra associated with t-free non-commutative gaussian random variables (notes)